基于 GoldenGate 的数据仓库实时供给可实现实时更新数据仓库数据,同时对源系统影响极小。它能提升商务智能和信息分析能力,提供实时可用的数据仓库。
数据仓库实时供给:基于 GoldenGate 的实现
相关推荐
基于Flink+FlinkCDC+FlinkSQL+Clickhouse实现实时数据仓库
《基于Flink+FlinkCDC+FlinkSQL+Clickhouse构建实时数据仓库》——本课程为大数据实时数仓项目实战课程,以大数据实时数仓项目为主线,理论和实战相结合,全方位、全流程、无死角讲解数仓项目的数仓基础、项目规划、需求分析、架构设计与技术选型、大数据平台构建、项目业务介绍、数据采集、数仓建模理论、数仓设计规范、数仓搭建、实时分析以及数据大屏制作。学完本课程,零基础的学员能入行大数据仓库工程师,有开发基础的学员也能快速积累项目实战经验
flink
2
2024-07-18
Druid 实时 OLAP 数据仓库架构解析
海量数据处理: 可扩展至 PB 级数据,满足大规模数据需求。
亚秒级响应: 即时导入,查询响应速度达亚秒级,实现实时数据分析。
高可用性: 分布式容错架构,确保无宕机运行,保障数据可靠性。
存储高效: 采用列存储和压缩技术,大幅减少数据存储空间,节省存储成本。
高并发支持: 支持面向用户应用,可满足高并发访问需求。
Hadoop
3
2024-04-30
实战Flink+Doris实时数据仓库
一、Doris是一种MPP的OLAP系统,集成了Google Mesa的数据模型、Apache Impala的MPP查询引擎以及Apache ORCFile的存储技术。二、Doris的功能包括数据分析、统计、报表和多维分析。它是百度自主研发并贡献给Apache开源社区的ROLAP数据库。Doris在数据查询延迟方面表现突出,聚合模型用于数据汇总分析,而明细模型则用于详细数据查询。与Kylin相比,Doris支持更广泛的数据场景。
flink
0
2024-08-14
基于 Hadoop 的大数据仓库构建
传统数据仓库在决策支持系统中曾扮演着至关重要的角色。然而,随着现代应用产生的数据量急剧增长,新的数据仓库系统应运而生,以应对数据集规模和格式、数据源多样性、非结构化数据集成以及强大的分析处理等挑战。在大数据时代,紧跟时代步伐并调整现有仓库系统以克服新问题和挑战至关重要。
本研究重点关注基于大数据的数据仓库。我们将探讨传统数据仓库的局限性,并介绍其替代技术以及数据仓库相关的未来研究方向。
Hadoop
2
2024-05-19
基于 Infobright 的 CentOS 数据仓库方案
Infobright 构建于 MySQL 体系之上,但并非依赖于 MySQL 运行。它自带精简的 MySQL 逻辑层,并通过独立优化的存储引擎实现数据存储,区别于传统关系型数据库,因此不能像 InnoDB 那样直接作为插件与 MySQL 集成。
MySQL
6
2024-05-31
GoldenGate实时数据应用策略
GoldenGate实时数据应用关键策略
确保数据完整性
降低数据延迟
提高数据可用性
简化数据管理
保护数据安全
Oracle
6
2024-05-26
大数据时代下的数据仓库实现
数据仓库的实现涉及到诸多挑战,包括处理海量数据、快速响应需求以及高效的查询处理技术。在当前大数据时代,数据仓库的建设变得尤为重要。
Memcached
0
2024-09-13
数据仓库应用的范围-BI数据仓库培训
在数据仓库应用的范围中,IT人员为业务用户开发支持独立分析的系统,满足不同用户群体的需求。主要应用包括:
专业分析人员:为这些用户提供复杂分析工具和资源。
标准报表:针对常规数据分析需求,提供稳定的报表输出。
即席查询分析:为用户提供灵活、实时的查询分析功能,支持即时决策。
复杂分析:通过深度分析工具,帮助专业人员进行数据挖掘和高级分析。
Oracle
0
2024-11-05
数据仓库
全面的数据集合,涵盖广泛主题,满足您的各种需求。
DB2
4
2024-05-15