本研究以教育数据挖掘的通用自变量为基础,结合官方考试评估报告,建立了客观评价学生能力提升的模型。
基于分层线性模型的学生数据挖掘研究
相关推荐
基于数据挖掘的学生学业成绩预测模型研究
数据挖掘技术在解决各领域业务问题中发挥着重要作用,例如教育、电信和零售管理等。凭借其在分类、聚类和关联规则挖掘等方面的功能,数据挖掘技术正变得日益重要。以学生学业成绩数据集为研究对象,构建了预测分类模型,并比较了朴素贝叶斯、决策树、随机森林、JRip 和 ZeroR 等算法的预测性能。研究结果表明,学校和学习时间等因素对学生的最终成绩有显著影响。其中,One Rule、JRip 和决策树等分类算法在预测学生成绩方面表现优异,准确率均超过 80%。
数据挖掘
3
2024-05-31
基于数据挖掘的个性化学习模型研究
数据挖掘技术助力网络教育个性化学习,提供定制化学习内容、指导和资源。文中分析了数据挖掘技术在个性化学习中的应用领域,探讨了其主要技术在学习各个环节的作用,为个性化学习模式提供理论依据。
数据挖掘
4
2024-05-01
基于智能Agent技术的高效数据挖掘模型研究.pdf
传统的数据挖掘方法存在效率低和缺乏智能化等问题,难以满足当前网络环境下对大规模数据的挖掘需求。探讨了数据挖掘技术与智能Agent技术的结合优势,提出了基于智能Agent的创新数据挖掘模型,并详细阐述了其组织结构。该模型显著降低了问题复杂性,减少了人工参与,极大提升了数据挖掘的智能化和效率。
数据挖掘
3
2024-07-16
基于人体能量模型的数据挖掘研究 (2011年)
利用数据挖掘技术,结合人体运动捕捉数据,探讨了基于能量模型的新算法。与传统几何位置相比,人体能量模型能够有效降低动作数据的复杂度,并准确反映原始动作特征。研究还通过相关系数分析不同关节之间的协同性,提取出低维度的动作索引。实验结果表明,该索引有效捕捉了动作的关键特征。结合支持向量机,该方法能够有效分类输入动作,为动作识别领域带来新的可能性。
数据挖掘
3
2024-07-27
基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
统计分析
0
2024-08-18
基于多维时间序列数据挖掘的降雨天气模型研究
多维时间序列数据挖掘是信息科学领域的一个重要研究方向,尤其在气象数据处理和天气预测方面有广泛应用前景。以研究降雨天气模型为背景,介绍了基于极值斜率分段线性拟合法的多维时间序列数据挖掘方法,展示了通过聚类数据挖掘技术分析气象数据,提炼出降雨与气象要素关系,并建立实用降雨天气模型。文章详细说明了多维时间序列和其在气象要素变化记录中的应用,强调了气象学研究及气候预测的重要性。作者提出新的多维时间序列数据挖掘模型,揭示多种气象要素间复杂的非线性变化趋势。还介绍了数据预处理过程,包括气象要素数据库创建、数据规范化和维度选择等步骤。在建立降雨天气模型时,作者强调了分段线性拟合法、聚类数据挖掘技术及规则提取的关键作用。
数据挖掘
0
2024-09-13
基于网络数据挖掘的研究
随着技术的迅速进步,网络数据量急剧膨胀,如何高效地从海量信息中提取有价值数据成为挑战。传统搜索引擎虽提供基础检索服务,但难以满足个性化需求。因此,将数据挖掘技术引入社会网络分析是当前重要研究方向。社会网络分析通过研究个体间互动模式,已扩展到分析网络链接结构及其潜在含义。在网络数据挖掘中,应用社会网络分析能有效理解信息流动模式、识别关键网页,提升信息检索质量和效率。
数据挖掘
0
2024-09-13
基于分层张量的气候模型数据自适应有损压缩
使用Matlab编写的自适应有损压缩代码,应用于气候模型数据,采用分层张量技术来优化压缩效率和数据保真度。该代码通过动态调整压缩参数,确保在不同数据模式下都能达到最佳性能。
Matlab
0
2024-09-24
基于分层格的整数包上的线性代数LAI-matlab开发
该软件包实现了解决积分线性系统的通用方法,涉及内核、图像及特定解决方案的计算。它依赖于符号工具箱和名为LLattice的类,后者实现了分层点阵,包括LLL缩减基的计算、交集的计算以及直接和的方法。所有计算均采用精确的有理数进行。
Matlab
0
2024-09-28