光谱数据预处理
该 MATLAB 源码包含光谱读入、降噪和去背景一体化功能,适用于多种光谱处理任务,例如拉曼光谱分析。
Matlab
16
2024-04-30
RapidMiner 2 数据导入导出与预处理
作为 RapidMiner 1 的进阶版本,RapidMiner 2 在数据处理方面展现出更强大的功能。将重点阐述 RapidMiner 2 在数据导入导出以及预处理方面的应用,帮助用户更高效地进行数据挖掘。
算法与数据结构
10
2024-06-04
复杂数据预处理与Kettle实战
复杂数据预处理 - Kettle
实验概述
本次实验主要针对复杂数据预处理进行实战演练,通过使用Kettle这一强大工具处理多种格式的数据文件。实验目标是利用所学的数据预处理技能来处理一系列关于学生基本信息及邮政编码信息的数据。
实验目的
综合运用数据预处理技巧,特别是利用Kettle处理复杂数据。
掌握如何使用Kettle对结构化和非结构化数据进行有效处理。
实现对数据的清洗、转换、合并等操作。
分析和处理数据中的缺失值、异常值等问题。
实验环境
开发工具: Kettle 8.2
操作系统: Ubuntu 16.04或Windows 7/10
需求描述
数据挖掘
5
2024-11-04
本地数据预处理分析
本地数据预处理
3.1 数据集简介
本实验使用小数据集 small_user.csv,共包含 30 万条记录,从大规模数据集 raw_user.csv 中提取。
3.2 数据预处理
删除数据头第一行的记录(字段名称):sed -i '1d' small_user.csv
Hadoop
14
2024-05-01
数据预处理技术优化
数据挖掘概念与技术数据预处理是一门极具实用性的课程讲义。
数据挖掘
8
2024-09-13
ExtraDict数据预处理词典
在数据预处理过程中,词典文件“extraDict.txt”提供了关键的支持,用于丰富和定制数据处理的功能。这个词典可以帮助规范数据中的词汇,提升数据清洗和特征处理的准确性。
数据挖掘
9
2024-10-29
数据集导入与预处理扩展Pandas筛选与修改
数据集导入与预处理:扩展Pandas筛选与修改中的数据集包括东京奥运会奖品数据。
统计分析
4
2024-09-19
Weka数据挖掘: 数据预处理实战
精简数据集
在数据挖掘中, 类似“ID”的属性通常不具备分析价值, 需要移除。 在Weka中, 我们可以通过选中 “id” 属性, 点击 “Remove” 按钮来实现。 操作完成后,将新的数据集保存为 “bank-data.arff” , 并重新打开。
数值属性离散化
一些数据挖掘算法, 例如关联分析, 只能处理标称型属性。 因此, 我们需要对数值型属性进行离散化处理。
本例中, “age”, “income” 和 “children” 三个变量属于数值型。 其中, “children” 只有四个取值: 0, 1, 2, 3。 我们可以直接修改ARFF文件, 将 @attri
数据挖掘
10
2024-05-16
数据预处理:Weka 数据挖掘教程
数据准备(预处理 1)
去除无用属性:删除无意义的属性,如 ID。
离散化:将数值型属性转换为标称型属性,以适合某些算法。例如,将“子女”属性从数值型修改为 {0, 1, 2, 3}。
数据挖掘
11
2024-05-01