Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
RSADRs:利用缺失值的基于粗糙集的FAERS数据库ADR信号检测的Python实现
数据挖掘
5
ZIP
9.66KB
2024-05-25
#FAERS
#药物不良反应
#自发报告系统
#缺失值
#粗糙集
#数据挖掘
#Python实现
本书作者:Phate
借助自发报告的ADR信号探查FAERS数据是我们的目标,而该项目作为系统的一部分,然而FAERS自发报告系统中缺失值的存在,为数据挖掘带来极大困难。
相关推荐
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
1
2024-08-03
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
2
2024-05-27
基于粗糙集属性约简的图像隐藏信息检测新方法(2008)
统计分析方法是图像隐藏信息检测中常用的手段,相较于特定隐写分析,其更为灵活,能够快速适应新的或未知的隐写算法。为解决高维特征属性问题,采用粗糙集属性约简技术,有效降低数据规模。实验结果显示,该方法在不影响分类精度的情况下显著提升了检测速度。
统计分析
0
2024-08-30
基于扩展粗糙集的近似概念格规则挖掘
粗糙集与概念格作为知识发现和数据挖掘的有效工具,已在诸多领域展现出应用价值。本研究在对二者理论基础进行深入研究的基础上,提出了一种利用扩展粗糙集模型改进概念格近似性的方法。 该方法通过引入 β-多数蕴涵关系,实现了概念格外延的近似合并,并构建了近似概念格 (ACL)。在此基础上,进一步提出了概念格粗糙近似和规则挖掘算法 (LCRA)。UCI 机器学习数据库测试结果验证了该算法的可行性和有效性。
数据挖掘
4
2024-05-23
基于粗糙集理论的煤矿瓦斯预测技术优化
针对煤矿瓦斯灾害的特点,提出了利用粗糙集理论进行瓦斯灾害预测的方法。分析了瓦斯灾害的特征,并建立了相应的知识库。应用粗糙集理论构建了煤矿瓦斯灾害预测的数据挖掘模型,讨论了模型中的属性关系,并采用信息熵准则对预测方法进行了优化。通过实际案例验证了粗糙集理论在瓦斯灾害预测中的有效性和实用性。
数据挖掘
2
2024-07-16
基于模糊粗糙集的企业财务报告舞弊检测研究(2011年)
企业财务报告舞弊检测方法的研究一直是财务管理领域的热点问题,目前的研究方法包括统计学、数据挖掘技术和模糊神经网络等。利用模糊粗糙集方法对财务指标进行约简并赋予权重,建立综合评价体系,进而构建企业财务报告舞弊检测模型,为解决财务报告舞弊问题提供新的思路。
数据挖掘
1
2024-07-20
粗糙集理论的学术探索与研究
粗糙集理论是处理不确定、不完整、不一致知识的数学工具,由Z. Pawlak于1982年提出,解决现实世界中的不确定性问题。该理论在数据挖掘、机器学习等领域广泛应用。不可区分关系是其核心概念之一,用于描述对象间的相似性。信息系统(I = (U, A, V, F))定义了论域、属性集合和属性值域之间的关系。上下近似集则描述了集合的不确定边界。
数据挖掘
0
2024-08-29
基于粗糙集的供应链绩效改进决策研究
利用粗糙集理论构建供应链绩效改进决策模型,包括指标约简方法和指标权重计算模型。结合制造业案例,通过平衡记分卡指标体系约简,建立决策模型,确定客观权重,分析结果并提出绩效改进建议。
数据挖掘
4
2024-05-20
基于可变精度粗糙集的 ID3 算法改进
数据挖掘是人工智能领域中知识发现的关键环节,其中分类占据主要地位。ID3 算法作为经典的决策树分类算法,在数据挖掘中得到广泛应用,但其抗噪声能力较弱。本研究结合分类和粗糙集理论,将可变精度粗糙集理论应用于属性信息熵计算,通过设定阈值放宽属性选择条件,对 ID3 算法进行改进。改进后的 VPID3 算法能够有效降低噪声对分类的干扰,提升含噪声数据的分类精度。此外,本研究还基于 VPID3 算法设计并实现了一个分类器,通过实验验证了该算法的性能。
数据挖掘
4
2024-05-21