数据挖掘是人工智能领域中知识发现的关键环节,其中分类占据主要地位。ID3 算法作为经典的决策树分类算法,在数据挖掘中得到广泛应用,但其抗噪声能力较弱。本研究结合分类和粗糙集理论,将可变精度粗糙集理论应用于属性信息熵计算,通过设定阈值放宽属性选择条件,对 ID3 算法进行改进。改进后的 VPID3 算法能够有效降低噪声对分类的干扰,提升含噪声数据的分类精度。此外,本研究还基于 VPID3 算法设计并实现了一个分类器,通过实验验证了该算法的性能。
基于可变精度粗糙集的 ID3 算法改进
相关推荐
MATLAB下ID3算法在IRIS数据集上的精度检验
在MATLAB环境下,我们实现了ID3算法,并在IRIS数据集上进行了精度检验。实验包括两个主要部分:第一部分是对连续值属性的离散化处理,我们采用了幼稚的四舍五入方法和类属性权变系数(CACC)算法;第二部分是使用离散化后的属性在MATLAB中实现ID3算法,并进行了多次训练和测试。实验结果通过混淆矩阵和精度评估进行了详细分析。
Matlab
0
2024-09-20
基于粗糙集的供应链绩效改进决策研究
利用粗糙集理论构建供应链绩效改进决策模型,包括指标约简方法和指标权重计算模型。结合制造业案例,通过平衡记分卡指标体系约简,建立决策模型,确定客观权重,分析结果并提出绩效改进建议。
数据挖掘
4
2024-05-20
ID3算法的C语言实现
数据挖掘中ID3算法的C语言实现非常详细,展示了其优秀的特性。
SQLServer
2
2024-07-17
ID3的Matlab实现
使用Matlab进行ID3决策树算法的实现。
算法与数据结构
3
2024-05-20
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
1
2024-08-03
ID3算法C语言实现
ID3算法的决策树学习过程目的是减少不确定性。如果选择属性A作为测试属性,它有性质a1,a2,a3,...,ai,当A=ai时属于第i类的实例数量为Cij。P(Xi;A=aj)表示测试属性A取值为aj时属于第i类的概率。Yj为A=aj时的实例集,则决策树对分类的不确定程度为训练实例集对属性A的条件熵:(3)(4)
数据挖掘
4
2024-04-29
决策树学习算法ID3
ID3(迭代二分器3)算法是一种经典的决策树学习方法,由Ross Quinlan于1986年提出。它专注于分类任务,通过构建决策树模型来预测目标变量。ID3算法基于信息熵和信息增益的概念,选择最优属性进行划分,以提高决策树模型的准确性。信息熵用于衡量数据集的纯度或不确定性,信息增益则是选择划分属性的关键指标。Delphi编程语言支持下的ID3算法展示了面向对象的实现方式。决策树模型直观地通过树状结构进行决策,每个节点代表特征,每个叶节点表示决策结果。
数据挖掘
0
2024-08-28
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
2
2024-05-27
ID3算法C程序实现与优化
ID3算法C程序实现与优化
小组成员:* 何冬蕾 1011200136* 潘荣翠 1011200132* 李燕清 1011200128* 余燕梅 1011200135* 龙兴媚 1011200130
数据挖掘
5
2024-05-20