天牛须搜索算法(BAS)受天牛觅食行为启发,于2017年被提出,用于解决多目标函数优化问题。天牛依靠两根长触角感知食物气味,触角感知的气味强度引导天牛的觅食方向。如果左侧触角感知到的气味强度大于右侧,天牛就会向左移动,反之亦然。通过这种简单而有效的方式,天牛最终可以找到食物。

BAS算法与遗传算法、粒子群算法等进化算法类似,不需要了解函数的具体形式或梯度信息,就能自动进行优化。与其他算法不同的是,BAS算法只使用一个个体进行搜索,因此寻优速度更快。在天牛须算法中,天牛的位置代表待优化问题的解,触角的长度代表搜索步长。通过不断地比较两侧触角感知到的函数值,天牛不断调整自己的位置,最终找到函数的最优解。

利用天牛须算法可以优化BP神经网络的初始权值和阈值,提高网络的训练效率和泛化能力。