Clementine 中文指南:数据挖掘实战宝典
这本指南深入浅出地讲解了 Clementine 在数据处理和数据挖掘领域的应用。从数据清洗、转换到模型构建、评估,指南涵盖了数据挖掘流程的各个环节,并辅以实际案例,是您使用 Clementine 进行数据挖掘的得力助手。
数据挖掘
8
2024-05-25
数据挖掘精髓与Clementine应用实战
数据挖掘精髓与Clementine应用实战
第二章 深入解析数据挖掘原理,并结合SPSS Clementine软件,提供实际应用案例,助您迅速掌握数据挖掘技术。
数据挖掘
12
2024-05-12
多重散点图节点-数据挖掘基础及SPSS-Clementine实战指南
多重散点图节点是一种特殊的散点图类型,用于展示单一X字段对多个Y字段的关系。每条Y字段以不同颜色的线条表示,每条线条均代表一个Y模式,并且X轴被设置为排序的散点图节点。这种图表特别适用于时间序列数据,有助于分析变量在不同时间段内的波动状况。
数据挖掘
6
2024-08-29
SPSS数据挖掘实战指南
SPSS数据挖掘实战指南
基于CRISP-DM方法论
本指南以CRISP-DM方法论为框架,详细阐述使用SPSS进行数据挖掘的流程。
1. 商业理解* 明确商业目标和数据挖掘目标* 评估项目可行性和资源
2. 数据理解* 收集数据并进行初步探索* 评估数据质量,处理缺失值和异常值* 理解数据结构和变量关系
3. 数据准备* 选择分析所需的数据* 清洗、转换和集成数据* 构建特征和派生变量
4. 建模* 选择合适的模型算法* 训练模型并进行参数调优* 评估模型性能
5. 评估* 验证模型是否满足商业目标* 分析模型结果,发现新的商业洞察
6. 部署* 将模型应用于实际业务* 监控模型性能,定期更
数据挖掘
10
2024-05-19
数据挖掘原理与SPSS-Clementine应用指南
5.2.2.1.相关概念t假定给定的样本数据为Y、X,其中因变量样本数据矩阵Y=(y1,y2,…,yn)是p×n样本矩阵,即p个因变量,n个样本;自变量样本数据矩阵X是q×n矩阵,即q个自变量,n个样本。在实际计算时,X一般是将原始数据中心化后得到的样本矩阵,即:X×1n=0。
数据挖掘
8
2024-07-15
数据挖掘原理与SPSS-Clementine应用指南
图21-91展示了线性回归节点汇总页签的详细内容,涵盖了数据挖掘原理与SPSS-Clementine应用的重要节点。
数据挖掘
12
2024-07-16
数据挖掘原理与SPSS-Clementine应用指南
19.2.4统计汇总图19-21展示了一个汇总节点的实例。汇总节点能够将一系列输入记录转换为综合且总结性的输出记录,具体的汇总对话框如图19-21所示。
数据挖掘
15
2024-08-10
数据挖掘原理与SPSS-Clementine应用指南
图19-23展示了如何设置和读取追加节点数据。追加节点通过从同一数据源读取所有记录,并保持数据结构的一致性,直至数据源无更多记录。
数据挖掘
10
2024-10-12
SAS EM数据挖掘实战指南
通过实际案例,逐步讲解如何运用SAS EM进行数据挖掘,适合初学者构建完整知识体系。
数据挖掘
13
2024-04-30