This handbook guides decision-makers through every stage of the modern data lake lifecycle. From initial research and decision-making to planning, product selection, implementation, and the crucial aspects of maintenance and governance, this resource offers practical and actionable advice for both managerial and IT professionals.
The Enterprise Big Data Lake: A Decision-Maker's Guide
相关推荐
oracle-enterprise-big-data-solutions-pdf
白皮书:Oracle:企业大数据解决方案(PDF)
Oracle 提供的 企业大数据解决方案 帮助企业通过大数据技术实现业务转型和提升效率。
该解决方案包括数据处理、存储、分析及可视化等方面,支持企业在大数据时代中实现更高效的决策和创新。
结合 Oracle 的数据库技术和云平台,企业能够更好地管理、分析和挖掘海量数据的价值。
通过该解决方案,企业可以有效地提升运营效率、降低成本,并加强与客户的互动。内容涉及具体的技术实现、实际案例及业务场景应用,提供详细的指导和建议。
Oracle
0
2024-11-06
Data Normalization for Neural Networks A Beginner's Guide
数据归一化将数据映射到[0,1]或[-1,1]或其他区间。为什么归一化? 1. 输入数据单位不一样,有些数据的范围特别大,导致神经网络收敛慢,训练时间长。 2. 数据范围大的输入在模式分类中的作用可能偏大,范围小的作用可能偏小。 3. 由于输出层激活函数的值域有限制,需将数据映射到激活函数的值域。
Matlab
0
2024-11-03
BigData_DW_Real Comprehensive Guide to Big Data Processing Architectures
BigData_DW_Real Document Overview
The document BigData_DW_Real.docx provides an extensive guide on big data processing architectures, covering both offline and real-time processing architectures. Additionally, it details the requirements overview and architectural design of a big data warehouse project.
Big Data Processing Architectures
Big data processing architectures are primarily classified into two types:
Offline Processing Architecture
Utilized for data post-analysis and data mining applications.
Technologies: Hive, Map/Reduce, Spark SQL, etc.
Advantages: Capable of handling large volumes of data.
Disadvantages: Slower processing speed, less sensitive to real-time demands.
Real-Time Processing Architecture
Suited for real-time monitoring and interactive applications.
Technologies: Spark Streaming, Flink.
Advantages: High responsiveness for time-sensitive data.
Disadvantages: Faster processing but limited to simpler business logic.
Big Data Warehouse Project Requirements
The big data warehouse project encompasses six key requirements:
Daily Active Users: Analysis with hourly trends and daily comparisons.
Daily New Users: Analysis with hourly trends and daily comparisons.
Daily Transaction Volume: Analysis with hourly trends and daily comparisons.
Daily Order Count: Analysis with hourly trends and daily comparisons.
Shopping Coupon Risk Warning: Function for identifying potential risks.
Flexible User Purchase Analysis: Customizable analysis functionality.
Architectural Design for Big Data Warehouse Project
Main Project (gmall): Based on Spring Boot.
Dependencies: Incorporates Spark, Scala, Log4j, Slf4j, Fastjson, Httpclient.
Project Structure: Includes parent project, submodules, and dependencies.
Technology Versions:- Spark: 2.1.1- Scala: 2.11.8- Log4j: 1.2.17- Slf4j: 1.7.22- Fastjson: 1.2.47- Httpclient: 4.5.5- Httpmime: 4.3.6- Java: 1.8
spark
0
2024-10-31
StarRing Big Data Introduction to Technologies
星环大数据平台权威指南,国内大数据平台,Hadoop,Spark等大数据技术入门介绍,星环内部培训资料。
Hadoop
0
2024-11-01
Impact_of_Big_Data_Disruption
在现代社会,大数据的冲击无处不在。其广泛的应用改变了各行各业的运作方式,从商业决策到社会行为分析,大数据带来了前所未有的变革。随着数据量的激增,如何有效管理和分析这些信息,成为了摆在各个行业面前的挑战。这一变化不仅影响了技术领域,也深刻影响了个人隐私和社会伦理的讨论。大数据的出现让我们开始思考未来技术的发展方向与数据安全的保护问题。
Oracle
0
2024-11-05
Data Mining Decision Tree Techniques for Performance Analysis
该论文具体阐述了数据挖掘中的决策树算法在成绩分析中的应用,帮助观察成绩的总体情况以及成绩的分类等。
数据挖掘
0
2024-10-31
Big Data Analysis of MR and Signaling Data in LTE Networks
在当前的大数据时代背景下,LTE网络的发展带来了大量的数据,为网络分析提供了全新的机遇和挑战。详细介绍了如何运用MR(测量报告)数据和信令数据进行联合分析,以解决网络用户投诉、优化网络性能等问题。
MR数据是TD-LTE系统输出的一部分,包含了三个主要部分:MRs、MRE(事件性测量统计)和MRo(原始测量统计)。MRo文件中包含了每个用户每个周期性测量事件的原始统计信息,是定位过程中使用的重点数据。信令数据通过s1接口进行分析,提供了用户事件等信息的参考,尤其是在用户级信令统计方面。
联合分析中,MR数据用于定位计算,信令数据提供详细的用户事件信息,两者结合将数据视角从小区扩展到具体地理位置。主要利用时间和s1APID信息来关联数据。在用户正常呼叫过程中,MMEuEslAPid保持不变,这使得在指定时间段内可以实现MR和信令的关联。
为处理和分析这些大数据,现代CPU的发展提供了强大的计算能力。MR数据的量级达到每天几个TB,信令数据则为几十个TB,处理这些数据需要高效的方法。信令详单是与MR进行关联的主要信令数据,为跨厂商的用户级信令统计提供了可能。通过这样的联合分析,运营商能够更加精准地定位网络问题,优化网络配置,提高用户满意度。
算法与数据结构
0
2024-10-31
Big Data by Nathan Marz and James Warren
Big Data by Nathan Marz with James Warren
Publisher: Manning Publications Co.Development Editors: Renae Gregoire, Jennifer StoutAddress: 20 Baldwin Road, PO Box 761, Shelter Island, NY 11964Technical Development Editor: Jerry GainesCopyeditor: Andy CarrollProofreader: Katie TennantTechnical Proofreader: Jerry KuchTypesetter: Gordan SalinovicCover Designer: Marija Tudor
spark
0
2024-10-28
Big Data Technologies in Smart Transportation Systems
随着科技的迅猛发展,大数据时代为智能交通领域带来了诸多变革。将探讨在大数据时代背景下,人工智能、大数据等新技术在智能交通中的应用,以及这些技术如何推动智能交通系统的重大变革。\\智能交通系统面临的主要痛点包括信息资源整合、数据智能分析决策、大数据全生命周期的新技术应用、信息主动推送以及智能网联汽车的发展等。这些痛点需要通过采用新技术来解决,从而提升交通系统的效率、安全性和智能化水平。\\信息资源整合是智能交通发展的基础。通过整合来自不同交通参与者和交通基础设施的数据资源,可以实现信息共享和互联互通。这不仅提高了数据的可用性,还能够通过大数据分析技术,对交通模式进行深入挖掘和预测,为交通管理和规划提供决策支持。\\数据智能分析决策在智能交通中的应用是大数据技术的核心。通过对海量交通数据的智能分析,可以优化交通流量、降低事故率、减少拥堵现象。例如,基于机器学习和数据挖掘技术,可以构建模型预测交通流、识别交通违规行为及制定最优交通信号控制策略。\\大数据全生命周期管理是智能交通中的另一个关键技术。从数据收集、存储、处理到分析和应用,每一个环节都至关重要。大数据技术使得从海量数据中提取有价值信息成为可能,包括实时数据、历史数据和预测数据。\\信息主动推送是提升交通系统智能化程度和用户体验的重要手段。通过分析用户需求和实时交通状况,可以主动向驾驶员或乘客提供个性化的交通信息,如路况信息、交通管制通知、公交路线推荐等。\\智能网联汽车技术的发展,是智能交通领域最引人注目的趋势之一。智能网联汽车通过与交通基础设施、其他车辆及互联网的互联互通,能够实现安全驾驶、自动泊车、远程控制等功能,极大提升了驾驶的便捷性和安全性。\\在研究现状方面,智能视频分析、交通信号控制、智能交通平台应用及智能网联汽车等领域已取得一些进展。例如,智能视频分析技术在交通监控和事故检测中的应用逐渐成熟,交通信号控制系统正在向智能化、动态化方向发展,智能交通平台则提供了更加集成化的交通管理解决方案。新技术的应用,如自然语言处理、计算机视觉、智能化交通信号控制、汽车电子标识、数据湖蓝光存储等,正在智能交通领域带来革命性的变化。
算法与数据结构
0
2024-10-31