CSDN 是业界领先的中文 IT 交流平台,涵盖技术博客、问题解答、培训课程、论坛讨论和资源下载。在这里,您能找到专业且优质的 IT 技术资源。
Python 数据分析与机器学习指南
相关推荐
使用Python学习数据分析:从数据整理到机器学习
使用Python进行数据分析之旅
本课程将引导您学习使用Python进行数据分析的全过程,涵盖以下关键领域:
数据导入和准备: 学习如何从各种来源导入数据集,并进行清理和预处理,为分析做好准备。
Pandas DataFrame操作: 掌握使用Pandas库高效操作和转换数据的方法,为后续分析打下基础。
数据汇总与统计: 学习如何使用统计方法和技术,从数据中提取有意义的见解和模式。
Scikit-learn机器学习: 探索如何使用Scikit-learn库构建机器学习模型,对数据进行预测和分类。
数据管道构建: 学习如何构建自动化数据分析流程,提高效率和可重复性。
课程涵盖主题
数据分析基础: 了解数据分析的基本概念、目标和流程,以及数据分析师的角色和职责。
ETL (提取、转换、加载): 掌握ETL过程,学习如何从各种数据源提取数据,进行必要的转换,并加载到目标系统中。
数据处理与探索性数据分析 (EDA): 学习如何使用Python工具和库对数据进行清洗、转换和探索,发现数据中的模式和趋势。
统计基础知识: 涵盖描述统计、概率、统计推断、假设检验等核心统计概念,为数据分析提供理论基础。
数据可视化: 学习如何创建图表和图形,直观地展示数据中的信息和关系。
数据挖掘: 探索数据挖掘技术,如方差分析和情感分析,以发现数据中的隐藏模式和知识。
通过本课程,您将获得使用Python进行数据分析的实用技能,并能够应用这些技能解决实际问题。
Matlab
3
2024-04-30
Python机器学习50天学习指南(包含源码)
学习机器学习的全过程,覆盖数据预处理、简单线性回归、多元线性回归、逻辑回归、k近邻法、支持向量机、决策树、随机森林、K-均值聚类和层次聚类,详细的Python编程实例。
算法与数据结构
1
2024-07-17
贷款数据分析与机器学习项目
本项目分析商业贷款组合中的风险和损失债务,通过人口统计、业务和部门特征进行详细统计分析。使用机器学习模型预测贷款还款前景,提高贷款管理效率。
统计分析
3
2024-07-15
数据分析与机器学习应用实例集锦
bigdata_analyse该repo包含多个实践项目,每个项目附有详尽说明文档,展示完整开发过程并提供数据集下载。 ## wish通过多种技术栈分析不同行业数据集,达成以下目标: -掌握各领域业务分析指标-进一步提升数据处理、分析和可视化能力-积累大数据批处理和流处理实践经验-深入数据挖掘实践## tip -项目主要使用python、sql和hql编程语言 - .ipynb文件适用jupyter notebook打开,支持markdown,非常适合数据分析和示例代码编写。
统计分析
0
2024-08-13
机器学习赋能数据分析
机器学习赋能数据分析
本篇内容聚焦于当前主流数据分析方法与机器学习算法原理,并探讨其在各个领域的实际应用。
我们将深入探讨各种机器学习算法,包括:
监督学习:例如线性回归、逻辑回归、支持向量机等,用于预测和分类任务。
无监督学习:例如聚类算法、降维算法等,用于发现数据中的隐藏模式和结构。
强化学习:探索智能体如何在与环境的交互中学习最佳策略,以实现目标最大化。
通过对这些算法原理的阐述,我们将展示机器学习如何帮助我们从数据中提取有价值的信息,从而做出更明智的决策。
算法与数据结构
3
2024-05-19
Python数据挖掘学习指南
Python数据挖掘是一个涵盖广泛领域的学科,它涉及到数据分析、统计学、机器学习等多个方面。要成为一名精通Python数据挖掘的专业人士,你需要掌握一系列的关键技能和知识。以下是对这些关键知识点的详细阐述: 1. Pandas库的操作:Pandas是Python中最常用的数据分析库,其强大的数据处理能力使得数据预处理变得简单。学习Pandas,你需要了解如何进行分组计算(如groupby)、索引(包括单一索引和多重索引)以及如何操作多表和创建数据透视表。掌握这些能帮助你有效地清洗、转换和组织数据。 2. Numpy数值计算:Numpy提供了高效的数组操作,它是许多科学计算的基础。要熟悉Numpy,你需要理解Numpy数组的概念,学会如何进行数组索引和计算,以及掌握Broadcasting,这是在处理不同形状数组时的一种重要机制。 3. 数据可视化:数据可视化是理解数据和呈现结果的关键。你需要学习如何使用matplotlib进行基本的图形绘制,并理解它与matlib的区别。此外,seaborn是一个高级的可视化库,它的界面更友好,可以生成更美观的图表。Pandas也内置了一些绘图功能,能方便地结合数据分析和可视化。 4. 数据挖掘入门:数据挖掘涉及到机器学习的基本概念,如代价函数、训练集、测试集和验证集的划分,以及过拟合的识别和防止。理解这些概念有助于你建立有效的模型。 5. 数据挖掘算法:掌握一些基础但重要的算法是数据挖掘的核心。最小二乘法用于线性回归,梯度下降是优化算法的基石,向量化用于提高算法效率,极大似然估计是估计参数的重要方法。Logistic Regression用于分类,Decision Tree和Random Forest是常见的决策树模型,XGBoost是一种高效的提升方法,常用于竞赛和实际项目。 6. 数据挖掘实战:通过scikit-learn库,你可以实现上述算法,并进行模型训练和评估。学习如何调参、交叉验证和模型选择是提升模型性能的关键步骤。除此之外,你还需要学习一些额外的知识,比如数据预处理(缺失值处理、异常值检测、特征编码等)、特征工程、模型评估指标、模型选择策略以及模型的解释性等。同时,对统计学基础、概率论的理解也很重要,因为它们是数据挖掘理论的基础。
数据挖掘
0
2024-11-02
TalkingData大数据分析与机器学习的应用
摘要:TalkingData目前专注于应用统计分析、游戏运营分析、移动广告监测、移动数据DMP平台及行业数据分析等领域。随着业务的快速扩展,数据规模不断增长,带来了挑战。将简要介绍我们在应对这些挑战过程中的经验。成立于2011年的TalkingData,提供企业级移动数据分析和挖掘解决方案,逐步增强机器学习的应用能力。作为新兴企业,尽管资源有限,我们通过创新应对大数据和计算能力的需求。
统计分析
2
2024-07-17
Python数据分析数据选择与运算指南
在Python数据分析中,数据的选择和运算是两个重要的环节。通过Pandas库,我们可以轻松完成数据的筛选、切片、分组和聚合等操作。
数据的选择
在数据选择过程中,主要用到以下几种方法:- loc:基于标签索引进行数据选择,适用于按行或列名选择数据。- iloc:基于位置索引进行选择,适合按行列位置获取数据。- 条件选择:通过布尔条件筛选数据,实现对特定条件的过滤。
数据的运算
Python提供了强大的运算工具,可以高效地处理大数据集。- 算术运算:可以直接在数据框中进行加减乘除等运算,适用于数值数据的处理。- 聚合运算:利用groupby进行分组聚合,统计汇总信息。- 函数应用:使用apply函数,对数据框中每列或每行进行自定义函数操作。
通过合理的数据选择和运算方法,Python在数据分析中展现了极高的灵活性。
统计分析
0
2024-10-25
Python机器学习:主成分分析
《Python机器学习》中第五章深入探讨了主成分分析 (PCA) 的概念和应用。PCA是一种用于提取主要特性的降维技术,在机器学习中广泛应用于数据可视化、特征选择和降噪等任务。
算法与数据结构
4
2024-05-13