网络模型

当前话题为您枚举了最新的 网络模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于复杂网络的学生社交网络模型研究(2008年)
利用实证数据分析QQ网络,研究了基于Internet的学生社交网络模型。通过比较网络度分布和特征参数,发现QQ网络与传统BA模型存在显著差异。提出了一种新的网络演化模型,并通过统计分析验证其与QQ网络参数的高度一致性,为学生社交网络研究提供了新的理论支持。
无线传感网络节点能耗模型优化
讨论了无线传感网络中节点能耗的模型优化问题,提供了基于Matlab的源程序,可直接应用于实际环境。
MATLAB神经网络工具箱中Hopfield网络的反馈网络模型
Hopfield网络(反馈网络)的仿真:simuhop设计solvehop设计Hopfield网络solvelin设计线性网络rands产生对称随机数learnbp反向传播学习规则learnh Hebb学习规则learnp感知层学习规则learnwh Widrow-Hoff学习规则initlin线性层初始化initp感知层初始化initsm自组织映射初始化plotsm绘制自组织映射图trainbp利用反向传播训练前向网络trainp利用感知规则训练感知层trainwh利用Widrow-Hoff规则训练线性层trainsm利用Kohonen规则训练自组织映射
Matlab代码对随机SIR网络的影响随机SIR网络模型
此存储库包含Matlab代码,用于描述无标度随机网络上的随机SIR动力学。该模型的详细描述可以在Matia Sensi合著的论文“网络属性和流行病参数如何影响无标度随机网络上的随机SIR动态”中找到。我们欢迎您提供反馈意见和建议。如果您发现错误或有任何问题,请通过以下邮箱联系我们:sara.sottile@unitn.it, ozan.kah@gmail.com, mattia.sensi@unitn.it。通过配置模型,您可以选择幂律分布的指数来生成无标度网络,并决定传播速度、感染节点的初始数量及其位置(如中心、平均程度、外围或随机)。运行程序的方法是键入:./configuration.py [FLAG] [P]。设置参数的方法是:N [节点数量] alpha [幂律指数] number_of_infected [起始时的感染数量] end_time [最大时间]
BP神经网络详解神经网络数学模型解析
神经网络是由许多神经元之间的连接组成,例如下图显示了具有中间层(隐层)的B-P网络。BP神经网络是一种数学模型,其详细解析如下。
MATLAB图与网络模型:实例与编程
MATLAB图与网络模型:实例与编程 本章深入探讨图与网络在数学建模中的应用,并结合MATLAB编程,提供实际案例的解决方案。 主要内容包括: 图的基本概念与表示方法 网络流问题建模与求解 最短路径问题建模与求解 最小生成树问题建模与求解 应用实例:交通网络优化、物流配送规划等 通过学习本章内容,您将掌握使用MATLAB构建和分析图与网络模型的技巧,并能够应用于解决实际问题。
基于复杂网络的SIR传播模型(Matlab)
这个Matlab代码基于小世界网络实现,是经典的SIR传播模型。模型中,个体状态经历S(易感)、I(感染)、R(康复)三种阶段。康复者具有免疫力,不再感染。尽管代码实现基本功能,其简洁性有待提高,适合学习SIR传播模型的代码设计思路。
常用深度学习网络模型优化.pptx
深度学习是机器学习的一个分支,专注于研究人工神经网络的学习算法和理论。其主要思想是利用多层神经网络来学习和表示复杂数据模式。常见的深度学习网络模型包括深度卷积网络、深度循环网络和生成对抗网络等。深度卷积网络(CNN)广泛应用于图像识别、目标检测和图像分割等领域。其核心组成部分包括卷积层、池化层和全连接层,分别用于特征提取、维度降低和最终分类结果输出。池化操作通过下采样来提高模型的泛化能力。深度循环网络(RNN)主要用于处理序列数据,广泛应用于自然语言处理和语音识别等领域。生成对抗网络(GAN)则用于生成新数据和数据增强。选择适合的模型类型对模型性能和泛化能力至关重要。
改进后的BP神经网络模型
主要借鉴了Matlab程序,对BP神经网络模型进行了改进和优化。
复杂网络基本模型的Matlab代码集合
这个Matlab代码集合涵盖了复杂网络中的基本网络模型,包括BA_NET、Clustering_Coefficient.m、Degree_Distribution.m、NN_coupled_net.m、NW_net.m、randomgraph.m、suijitu.m和WS_net.m。这些模型对研究复杂网络结构和特性具有重要意义。