归因
当前话题为您枚举了最新的归因。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
数据挖掘:缺失值归因或填充
当缺失值数量较少时,可以使用插入值替换空值。方法包括:1. 固定值(字段平均值、范围中间值或常数)2. 基于正态或均匀分布的随机值3. 自定义表达式(如全局变量)4. C&RT模型预测值(使用单独模型,用预测值替换空白和空值)
数据挖掘
3
2024-05-25
使用Matlab实现图像锐化的代码比较梯度归因图
该存储库提供多种方法计算梯度归因图,以探究深度神经网络分类决策中图像哪些部分最关键。除此之外,还提供完整性检查,评估梯度归因图的准确性。卷积神经网络(CNN)的普及使得理解其预测过程变得至关重要。显著性图帮助识别网络分类决策的关键像素。该存储库使用梯度归因方法计算出显著性图,确保提供准确信息。需要Matlab R2020a及更高版本。
Matlab
2
2024-07-24