实时执行
当前话题为您枚举了最新的 实时执行。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Matlab开发实时执行的Simulink Block
Matlab开发:实时执行的Simulink Block。通过C-MEX S-函数,将模型执行速度优化至接近实时水平。
Matlab
2
2024-07-13
Matlab软件开发实时执行环境的生成
Matlab软件开发中,为Windows或Linux系统生成实时可执行文件是一项关键任务。这项工作需要充分利用Matlab的实时处理能力,确保生成的程序在运行时表现出稳定和高效的特性。
Matlab
2
2024-07-22
实时工坊资料
MATLAB 学习必备资料,欢迎查阅。
Matlab
3
2024-04-30
Hive 并发执行
在 Hive 中,一条 SQL 语句可能包含多个 Job,默认情况下这些 Job 会顺序执行。如果这些 Job 之间没有依赖关系,可以通过设置参数 set hive.exec.parallel=true 来实现 Job 的并发执行。默认情况下,可以并发执行的 Job 数量为 8。
Informix
4
2024-05-12
MapReduce执行阶段
Map阶段:读取输入数据并将其映射为键值对。
Shuffle和Sort阶段:对map产生的键值对进行分发、排序和分区。
Reduce阶段:对分好区的键值对进行聚合、规约和输出。
框架应用:- Hadoop:MapReduce处理大规模数据的核心引擎。- Hive:使用MapReduce在HDFS上执行SQL查询。- HBase:使用MapReduce在HDFS上存储和处理大规模非关系数据。
Hadoop
2
2024-05-28
SQL语句执行
在SQL环境中执行指定语句。
SQLServer
3
2024-06-01
Storm: 实时计算利器
Storm 简化了集群中实时计算的开发和扩展。它好比实时处理领域的 Hadoop,确保每条消息都被处理,并在小型集群中达到每秒百万级的处理速度。更强大的是,Storm 支持多种编程语言进行开发。
Storm
3
2024-05-08
Storm实时流处理流程
Storm的工作流程可以概括为以下四个步骤:
用户将Topology提交到Storm集群。
Nimbus负责将任务分配给Supervisor,并将分配信息写入Zookeeper。
Supervisor从Zookeeper获取分配的任务,并启动Worker进程来处理任务。
Worker进程负责执行具体的任务。
Storm
3
2024-05-12
Storm组件-实时处理
Storm组件包含以下部分:Topology是storm中运行的一个实时应用程序。Nimbus负责资源分配和任务调度。Supervisor负责接受Nimbus分配的任务,启动和停止属于自己管理的worker进程。Worker运行具体处理组件逻辑的进程。Task是worker中每一个spout/bolt的线程。Spout在一个Topology中产生源数据流的组件。Bolt在一个Topology中接受数据然后执行处理的组件。Tuple是一次消息传递的基本单元。Stream grouping是消息的分组方法。
Storm
2
2024-07-12
实时遥测的Matlab开发
Matlab开发涉及实时遥测功能,包括获取加速度、档位、速度、温度和时间等变量。
Matlab
1
2024-07-28