动态主题模型

当前话题为您枚举了最新的 动态主题模型。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

客户信息主题维度设计模型
客户基本信息模块 模块功能: 用于分析客户数量和客户属性。 事实表: 客户信息事实表 度量: 客户数量 数据粒度: 每个客户每月计算一次收益,事实表每条记录代表一个客户的属性。事实表存放一年以内的数据,超过十年的数据按月滚动,最初的数据汇总后从事实表卸出。 相关维度: 客户详细资料维度 客户性别维度 客户年龄层次维度 客户在网时间维度 客户消费层次维度 客户信用度层次维度 是否大客户维度 交费类型维度 地理维度 客户流失概率层次维度 客户挽留价值层次维度 成为大客户概率层次维度
基于网络信息搜集的主题强度分析模型
基于网络信息搜集的主题强度分析模型 为了研究特定主题在互联网上的表现强度,本章提出一种基于网络信息搜集和分析的实验模型。该模型模拟传播学中的“议程设置”理论,通过系统地搜集和分析网络信息,从不同角度和层次揭示互联网对该主题的报道强度。 模型步骤 该模型包含以下步骤: 样本空间选取: 由于无法考察互联网上的所有信息,需要选取一个代表性的网页子集作为样本空间。 主题特征提取: 确定目标主题的关键词、相关概念以及其他特征,用于识别与主题相关的网页。 目标参量设置: 定义用于衡量主题强度的指标,例如网页数量、关键词频率、链接关系等。 网页搜集: 利用搜索引擎或网络爬虫,根据主题特征搜集相关网页。 数据后处理: 对搜集到的网页进行分析,计算目标参量,并进行统计分析,以评估主题强度。 模型意义 该模型的实现依赖于计算机技术,为网络传播学研究提供了一个强大的实验工具。通过该模型,可以定量分析特定主题在互联网上的表现强度,为理解网络舆情、社会热点等问题提供科学依据。
基于主题的水文信息组织模型研究
随着在线分析处理(OLAP)和数据挖掘技术的兴起,传统水文信息组织方式在适应其数据源需求方面显得力不从心。为此,有必要对现有水文信息组织方式进行分析,并针对 OLAP 和数据挖掘对数据源的特定需求,构建一种全新的面向主题的水文信息组织模型。
Python实现LDA时间主题模型的TOT代码
LDA的时间主题模型,Python实现代码,包括输入数据和停用词,运行无误。
基于小红书评论的LDA主题模型分析
利用小红书评论数据,结合TF-IDF技术,展开LDA主题模型分析。
LDA模型(MATLAB版)- LDA:旧式主题建模(Python版)
本项目通过Gibbs采样推理实现LDA(潜在狄利克雷分配)。 优势: 契合度 加速Gibbs采样过程 参考: @article {heinrich2005parameter,title = {用于文本分析的参数估计},作者= {Heinrich,G.},journal = {Web:,year = {2005}}} 注意: Gibbs采样速度较慢,难以检查收敛性。 结果不佳,可能是语料库规模较小所致。 不同运行的结果可能有很大差异。 主题建模工具: David Blei的收藏 UMass的Mallet 斯坦福主题建模工具箱 Mark Steyvers和Tom Griffiths编写的MATLAB主题建模工具箱 LDA-J R包 topic-modeling-tool(基于Mallet的图形用户界面工具)
基于标签主题模型的网络文本分类研究
随着互联网的快速发展,文本自动分类在数据挖掘中显得尤为重要。基于标签主题模型的研究,更好地帮助人们挖掘和利用有用信息。
协议主题数据仓库模型介绍及建模过程
协议主题(Agreement)数据仓库模型是金融机构用来管理客户契约关系的数据模型。该模型涵盖了账户、合同、存款账户、贷款账户、凭证、投资成交单、卡访问介质、申请单等协议范畴。该模型用于存储和处理协议数据,以支持产品、事件、渠道、当事人、资产、财务、区域、营销、内部机构等方面的业务分析和决策制定。
Matlab信任模型代码库 - DMC动态选择模型
DMC动态选择模型是由Michael Wilson维护的Matlab代码仓库分支。请参阅下面的注释以获取作者信息、用法和项目历史记录。此分支包括来自Andrew Heathcote编写的R函数和相关教程,还涵盖了Brandon Turner、Scott Brown编写的DE-MCMC代码以及Dora贡献的停止信号材料。DMC的主要目的是支持研究人员使用贝叶斯方法拟合传统的动态选择模型,简化复杂的计算过程并提供实用的功能。
MATLAB SimMechanics单摆模型动态仿真
运动可视化SimMechanics支持MATLAB自定义图像处理窗口,以透视图显示机器运动。刚体可以用椭圆体或坐标中的封闭曲面表示。利用这些方式演示单摆模型的可视化,仿真前后展示单摆的动态过程。