Flink架构
当前话题为您枚举了最新的Flink架构。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Apache Flink 架构解析
深入探讨 Apache Flink 的核心架构,并剖析其关键特性,帮助读者全面理解 Flink 的运行机制和优势。
1. 分层架构
Flink 采用分层架构设计,自下而上依次为:
部署层: 支持多种部署模式,包括本地、集群、云端等,以适应不同的应用场景。
核心层: 包含 Flink 的核心组件,如 JobManager、TaskManager、ResourceManager 等,负责作业的调度、执行和资源管理。
API 层: 提供不同级别的 API,包括 ProcessFunction API、DataStream API 和 SQL API,满足不同用户的编程需求。
库层: 提供丰富的扩展库,例如 CEP(复杂事件处理)、Machine Learning(机器学习)等,扩展 Flink 的应用范围。
2. 关键特性
高吞吐、低延迟: Flink 采用流式数据处理引擎,能够处理高吞吐量的实时数据流,并保证低延迟。
容错机制: Flink 内置强大的容错机制,支持 Exactly-Once 语义,保证数据处理的准确性。
状态管理: Flink 提供多种状态管理方案,例如内存状态、RocksDB 状态等,支持大规模状态存储和访问。
时间语义: Flink 支持多种时间语义,包括 Event Time、Processing Time 和 Ingestion Time,方便用户处理不同类型的数据流。
3. 应用场景
Flink 广泛应用于实时数据分析、事件驱动应用、数据管道构建等领域。
flink
3
2024-07-01
Flink 核心概念与架构解析
Flink 核心概念
时间语义与窗口
状态管理与容错
数据流编程模型
Flink 架构解析
JobManager、TaskManager
执行图与数据流
部署模式
并行度与资源管理
flink
5
2024-05-12
深入解析Flink架构及操作指南
深入探讨了Flink架构原理、应用场景、特点优势,以及如何在企业级环境中进行分布式集群部署、任务提交与高可用设置。涵盖了常用API、窗口处理、状态管理、表格操作以及复杂事件处理等关键技术,适合需要实时业务处理方案的学习与应用。
flink
0
2024-08-13
深入解析Flink核心架构与执行流程从源码剖析
Flink是当前大数据处理领域中备受关注的开源分布式流处理框架,其毫秒级的数据处理能力在实时计算场景中尤为突出。将通过Flink官网提供的WordCount示例,深入分析其核心架构与执行流程,帮助读者深入理解Flink的运行机制。
1. 从Hello, World到WordCount:Flink执行流程起步
Flink的执行流程从设置执行环境开始。在WordCount示例中,首先创建了一个StreamExecutionEnvironment实例,这一配置作为Flink任务的入口。程序配置了数据源,以socket文本流为例,指定了主机名和端口号。接着,代码读取socket文本流并进行分词与计数操作,最终输出统计结果。在此过程中,Flink将用户定义的流式处理逻辑编译成一系列算子(Operator),并将这些算子组织为执行图(ExecutionGraph)。
2. Flink的图结构:StreamGraph、JobGraph与ExecutionGraph
Flink采用三层图结构来表示数据流处理的作业流程:- StreamGraph:对用户定义作业的概念性描述。- JobGraph:由StreamGraph生成,适用于资源调度。- ExecutionGraph:具体的执行计划,包括任务ID和状态信息。
3. 任务的调度与执行:动态资源管理
Flink的任务调度和执行是动态的,由JobManager和TaskManager协同完成。资源管理由资源管理器(如YARN、Mesos)提供,并通过Flink的ClusterManager来管理。
3.1 计算资源的调度
Flink的集群管理器负责资源分配和任务调度,根据作业需求调度资源执行任务。
3.2 JobManager的作用
JobManager负责作业调度、任务监控和容错,主要组件包括JobMaster(作业调度)、Task调度器(任务调度)、以及资源管理器。
3.3 TaskManager的执行
TaskManager负责实际任务的执行,通过与JobManager协同完成任务处理。
flink
0
2024-10-25
Flink流批一体化技术架构及阿里实践
Apache Flink在创立时支持多种计算形态,包括流计算、批处理和机器学习等。阿里巴巴选择Flink作为新一代大数据引擎,并在内部版本Blink中采用SQL作为流批一体化的统一入口,针对流计算和批处理进行了优化。这种流批一体化架构在阿里的搜索离线数据处理和机器学习平台上表现出色。演讲将分享Blink在流批一体化场景中的优化及面临的挑战与解决方案。
flink
2
2024-07-14
精通Apache Flink,学习Apache Flink
根据所提供的文档内容,可以了解以下信息:1. Apache Flink简介:Apache Flink是一个开源的流处理框架,支持高吞吐量、低延迟的数据处理,具备容错机制,确保数据处理的准确性。Flink的架构包括Job Manager负责任务调度和协调,Task Manager执行任务。它支持状态管理和检查点机制,实现“恰好一次”状态计算。此外,Flink提供了窗口操作来处理滑动、滚动和会话窗口,以及灵活的内存管理。Flink还包含优化器,同时支持流处理和批处理。2. 快速入门设置:了解Flink的安装和配置步骤,包括在Windows和Linux系统上的安装,配置SSH、Java和Flink,以及启动守护进程和添加额外的Job/Task Manager。还需了解如何停止守护进程和集群,以及如何运行示例应用。3. 使用DataStream API进行数据处理:定义数据源,进行数据转换操作和应用窗口函数,支持物理分区策略,处理事件时间、处理时间和摄入时间。4. 使用批处理API进行数据处理:针对有限数据集,支持文件、集合、通用数据源及压缩文件,包括Map、Flat Map、Filter、Project等转换操作,以及归约操作和分组归约操作。5. 连接器:连接Apache Flink与其他系统,包括Kafka、Twitter、RabbitMQ和E。
flink
0
2024-08-21
Flink 系列指南
使用说明
教程实战
配置详解
文档资料
代码示例
flink
3
2024-05-20
Flink 实战宝典
Flink 应用案例集锦
本资源汇集了丰富的 Flink 开发实例,涵盖实时数据处理的常见应用场景,帮助您快速上手 Flink 并构建强大的流处理应用。
案例主题包括:
实时数据ETL
实时监控与告警
实时推荐系统
风险控制与欺诈检测
物联网数据分析
每个案例包含:
业务背景介绍
技术架构解析
核心代码实现
性能优化技巧
学习资料推荐:
Apache Flink 官方文档
Flink 中文社区
Ververica 平台
MySQL
3
2024-05-25
Flink 实践项目代码
内包含 Flink 开发的示例源码,可用于学习和参考。
flink
3
2024-04-30
Apache Flink 流处理
Apache Flink 是一个开源框架,使您能够在数据到达时处理流数据,例如用户交互、传感器数据和机器日志。 通过本实用指南,您将学习如何使用 Apache Flink 的流处理 API 来实现、持续运行和维护实际应用程序。
Flink 的创建者之一 Fabian Hueske 和 Flink 图处理 API (Gelly) 的核心贡献者 Vasia Kalavri 解释了并行流处理的基本概念,并向您展示了流分析与传统批处理的区别。
flink
5
2024-05-12