Structure-Aware Algorithm

当前话题为您枚举了最新的 Structure-Aware Algorithm。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab Structure-Aware Mesh Simplification Algorithm for CMPT 764Course Project
Matlab 中存档算法代码 结构感知网格简化 这是 CMPT 764 课程项目的存储库。该存储库包含网格简化方法的实现,该方法使用对象的 结构信息 在抽取时保留关键特征(如对称性和垂直性)。我们首先收集有关对象网格的 对称部分 数据,在对称部分的顶点之间建立对应关系,并将此信息提供给抽取框架。将 近平面的三角形面 在平面代理下组合在一起,然后将其用于多种结构保留规则。通过比较所提方法和多选方案的抽取结果,进行了实验,结果表明该方法具有较好的性能。在 Ubuntu (15.10) 上进行设置的步骤:您将需要安装 OpenGL 和 GLUI 库才能在此存储库中运行代码。使用以下命令安装 freeglut 软件包:sudo apt-get install freeglut3-devsudo apt-get install binutils-gold从 Ubuntu 软件包档案中下载软件包 libglui2c2 和 libglui-dev。以下是 64 位架构链接:安装它们:sudo dpkg -i libglui2c2_2.36-4ubuntu1_amd64.debsudo dpkg -
Online Survey System Data Structure and Workflow
1. Data Dictionary 1.1.1 Data Items- Zzzno: Organizer ID, Integer- Bdcno: Respondent ID (randomly generated login number), Integer- Bdcage: Respondent age, Integer- Wjno: Survey ID, Integer- Wtno: Question ID, Integer- Dckstime: Survey start time, Datetime- Dcjstime: Survey end time, Datetime- Wjmd: Survey purpose, Char(20)- Wjbt: Survey title, Char(20)- Zzznam: Organizer name, Char(10)- Wjqt: Others, Char(50)- Qyq: Question requirements, Char(50)- Bdcsex: Respondent gender, Char(10)- Bdclink: Respondent contact information, Char(50)- Qnr: Question content, Char(100)- Qxx: Question options, Char(10)- Qbz: Question notes, Char(100)- Qno: Question number, Integer 2. Data Structures Paper: Survey structure, includes question number, question content, and options.Zzzinfprm: Organizer information, includes organizer name, ID, etc.Bdcinform: Respondent information, includes respondent ID, age, gender, etc.Question: Question information, includes question number, content, options, etc. 3. Data Flows Random login verification: Verifies respondent login. Organizer query: Organizers can access survey information and control functions. 4. Data Storage Statistical data: Stores completed question information from respondents. Question bank: Holds all questions available for surveys. Participant data: Records information of all survey participants. 5. Processing Survey Participation: Respondents log in using a unique ID and answer questions. Data flows into statistical records. Organizer Functionality: Organizers log in, check statistics, manage question bank, and access result views. Create User (Organizer): Creates respondent profiles with unique IDs and related information. 6. System Requirements 1.1 System Overview- System Scope: The system caters to both organizers, who create and manage surveys, and respondents, who answer surveys using unique IDs. 1.2 Functional RequirementsOrganizers are enabled to control survey flow, access data, and monitor responses, while respondents participate via a simplified login and answer submission process.
Oracle Logic Structure Diagram-Tutorial
在Oracle数据库中,逻辑结构示意图展示了数据库的组成部分。以下是各部分的说明: Database Blocks:数据库块是数据库的基本存储单位,存储数据的基本单元。 Tablespace:表空间是数据库逻辑存储结构的集合,包含多个数据文件。 Next Extent 5 MB:扩展是表空间中数据文件的物理增长单位,当前为5MB。 Segment 20 MB:段是由一组连续的数据库块组成的逻辑存储单位,当前段大小为20MB。 Initial Extent 15 MB:初始扩展是表空间创建时的初始空间分配量,此处为15MB。
Relational Database Data Structure Fundamentals of Oracle Database
关系数据库的数据结构是指一些相关的表和其他数据库对象的集合。对于关系数据库来说,关系就是表的同义词。表由行和列组成(类似二维数组的结构)。列包含一组命名的属性(也称字段),行包含一组记录,每行对应一条记录。行和列的交集称为数据项,指出了某列对应的属性在某行上的值,也称为字段值。列需定义数据类型,比如整数或者字符型的数据。
Data Parity Structure in Exploration Seismology with MATLAB Algorithms
Ⅱ.3.5 Data Parity Structure Data signals contain parity codes based on the following rules. Ⅱ.3.5.1 Parity Rules A 24-byte CRC parity provides protection against undetected destructive errors, with an error probability of ≤ 5.96×10⁻⁸ or about ≤ 0.5 channel byte errors. The CRC word is computed from the given information bits, driving them towards zero. The resulting 24-byte output (p₁, p₂,..., p₂₄) is generated from the information bytes (m₁, m₂,..., m₂₇₆) using a polynomial code. Here, the code bits gi=1 (for positions i=0, 1, 3, 4, 5, 6, 7, 10, 11, 14, 17, 18, 23, and 24) define this code, known as CRC-24Q (Q represents Qualcomm Corporation). The polynomial generator in binary algebraic form is as follows: [Binary Polynomial Representation] This polynomial ensures robust data integrity in exploration seismology data transmission processes.
Inventory Purchase-Sales-Storage Project Table Structure Details
The Inventory Purchase-Sales-Storage Project Table Structure provides a comprehensive breakdown of essential tables, relationships, and data types required for managing inventory operations effectively. Each table aligns with core functionalities such as purchasing, sales tracking, and stock management. Key Table Structure Purchase Table: Contains fields like supplier ID, purchase date, item ID, quantity, and purchase price, essential for tracking all procurement activities. Sales Table: Manages customer ID, sales date, item ID, quantity, and sales price. It ensures detailed tracking of each sale and supports effective revenue management. Inventory Table: Records item ID, stock quantity, minimum stock level, and reorder level, forming the core of stock management. Additional Tables Supplier and Customer Tables: For detailed records of both suppliers and customers. Transactions Log: Tracks all inventory movements, essential for auditing purposes. This structure ensures streamlined operations across purchase, sales, and inventory control, with relational links that maintain data integrity and operational efficiency.
Genetic Simulated Annealing Algorithm Based on Simulated Annealing Algorithm in GOAT Toolbox
本项目使用GOAT遗传工具箱完成基于模拟退火算法优化的遗传算法。通过将模拟退火算法引入遗传算法的优化过程,提升了算法在复杂问题求解中的效率。所有代码和函数都在GOAT工具箱中完成,并进行了详细注释,方便用户理解和修改。使用时,需要调用GOAT工具箱中的相关函数,确保在Matlab环境下正确运行。 Matlab编译环境使用说明: 下载并安装GOAT工具箱。 调用相关函数时,确保工具箱路径已配置。 运行代码前,检查代码中的所有依赖项。 根据需要调整优化算法的参数以适应不同的求解任务。
Genetic Algorithm for TSP Optimization
遗传算法是一种模拟自然界生物进化过程的优化方法,广泛应用于解决复杂问题,如旅行商问题(TSP)。旅行商问题是一个经典的组合优化问题,目标是找到一个最短的路径,使得旅行商可以访问每个城市一次并返回起点。在这个问题中,遗传算法通过模拟种群进化、选择、交叉和变异等生物过程来寻找最优解。\\在\"遗传算法解决TSP\"的MATLAB程序设计中,我们可以分解这个问题的关键步骤: 1. 初始化种群:随机生成一组解,每组解代表一个旅行路径,即一个城市的顺序。 2. 适应度函数:定义一个适应度函数来评估每个解的质量,通常使用路径总距离作为适应度指标。 3. 选择操作:通过轮盘赌选择法或锦标赛选择法等策略,依据解的适应度来决定哪些个体将进入下一代。 4. 交叉操作(Crossover):对选出的个体进行交叉,产生新的个体。 5. 变异操作(Mutation):为保持种群多样性,对一部分个体进行随机改变。 6. 终止条件:当达到预设的迭代次数或适应度阈值时,停止算法。\\在MATLAB中实现遗传算法解决TSP,需要注意以下几点: - 数据结构:通常使用一维数组表示路径,数组中的每个元素代表一个城市。 - 编程技巧:利用MATLAB的向量化操作可以提高程序效率。 - 优化技巧:可以采用精英保留策略,确保每一代中最好的解都被保留。\\遗传算法的优势在于它不需要对问题进行深度分析,而是通过搜索空间的全局探索来寻找解。然而,它也可能存在收敛速度慢、容易陷入局部最优等问题,因此在实际应用中,可能需要结合其他优化方法,以提高求解效果。通过深入理解和实践这个MATLAB程序,你可以更好地理解遗传算法的运作机制,并将其应用于解决实际的TSP问题和其他类似的优化挑战。
Implementing PCA Algorithm in MATLAB
本项目建立PCA模型,使得PCA算子可以在任意时刻应用。实现基于MATLAB的PCA算法。
GraphMaxFlow_Algorithm_Overview
1. 构造有向图 使用以下代码创建带有节点和边的有向图: cm = sparse([1 1 2 2 3 3 4 5],[2 3 4 5 6 6],[2 3 3 1 1 1 2 3],6,6); 此图包含8个节点和6条边。 2. 计算最大流 使用以下命令计算从第1个到第6个节点的最大流: [M,F,K] = graphmaxflow(cm,1,6); 3. 显示原始图结构 可视化原始有向图: h0 = view(biograph(cm,[], 'ShowWeights', 'on')); 4. 显示最大流矩阵图结构 可视化计算得到的最大流矩阵: h1 = view(biograph(F,[], 'ShowWeights', 'on')); 5. 标注求解结果 在原始图结构中标注求解结果: set(h0.Nodes(K(1,:)), 'Color', [1 0 0]); 6. 图的遍历函数 使用以下命令格式遍历图: [disc, pred, closed] = graphtraverse(G, S); 例如,创建一个有向图的示例: DG = sparse([1 2 3 4 5 5 5 6 7 8 8 9], [2 4 1 5 3 6 7 9 8 1 10 2], true, 10);