概率推理
当前话题为您枚举了最新的 概率推理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
数据挖掘算法的案例推理
案例推理是一段带有上下文信息的知识,表达了在达到目标过程中推理机关键作用的经验。
数据挖掘
1
2024-07-23
案例推理数据挖掘算法概述
案例推理是一个具有上下文信息的知识段落,强调推理机在实现目标过程中的关键作用。这些经验可以帮助理解数据挖掘算法的应用场景和效果。
数据挖掘
2
2024-07-31
图解推理题库数据库
涵盖逻辑推理、脑筋急转弯、趣味几何、趣味数学、趣味益智、数字推理、图形视觉、图形推理、侦探推理九大类别,共计354道推理题,辅以图片,生动呈现解题思路。
Access
3
2024-05-19
统计学习基础推理与预测技巧
这本书是数据挖掘领域的经典教材,目前还少见中文翻译版,是学习数据挖掘的必备参考资料。
数据挖掘
0
2024-09-14
统计学习基础:数据挖掘、推理与预测
数据分析领域的经典教材,涵盖统计学基础、数据挖掘、推理和预测。
包含:- 英文原版(第二版)- 中文译本(第一版)- 英文版习题答案(数学公式与语言无关)
算法与数据结构
2
2024-04-30
大数据背景下科学推理的概念革新
过去十年中,利用大数据推动科学发现的理念引发了来自私营和公共部门的巨大热情和投资,并且预期仍在持续增长。使用大数据分析来识别隐藏在从未组合过的海量数据中的复杂模式可以加速科学发现的速度,并促进有益技术和产品的开发。然而,从如此庞大、复杂的数据集中产出可操作的科学知识需要能够产生可靠推论的统计模型 (NRC, 2013)。
算法与数据结构
4
2024-05-21
多种概率分布及其应用
均匀分布:随机变量取值在指定区间内均匀分布,用 U(a, b) 表示。
正态分布:随机变量取值呈钟形曲线分布,用 N(μ, σ²) 表示。
指数分布:随机变量取值呈非对称分布,无记忆性,用 Exp(λ) 表示。
Gamma 分布:随机变量取值呈非对称分布,用于表示服务时间和零件寿命,用 G(α, β) 表示。
Weibull 分布:随机变量取值呈非对称分布,用于表示设备寿命,用 W(α, β) 表示。
Beta 分布:随机变量取值在 (0, 1) 区间内,用于表示概率和比例。
算法与数据结构
2
2024-04-30
Matlab概率统计实验应用
能够使用Matlab计算概率、均值和方差; 2. 能够执行常见分布的数值计算; 3. 能够利用Matlab进行期望和方差的区间估计; 4. 能够使用Matlab进行回归分析。
Matlab
0
2024-09-30
统计学习要素数据挖掘、推理与预测
统计学习要素:数据挖掘、推理与预测是机器学习领域中的重要资源,涵盖了广泛的相关内容。
数据挖掘
1
2024-07-26
R语言计算t分布概率
已知X服从自由度为30的t分布,用R语言计算:1) P(X>1.96)2) P(X≤a)=0.01并与标准正态分布的计算结果进行比较。
统计分析
7
2024-04-30