server-id
当前话题为您枚举了最新的server-id。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
大数据高效ID生成:一秒5000个不重复ID
在需要快速生成大量不重复ID的大数据场景下,SnowflakeIDWorker算法可以一秒生成5000个ID。该算法的核心是利用时间戳(long timestamp = timeGen();)以及上一个时间戳加位移来确保ID的唯一性。
算法与数据结构
4
2024-05-20
TransE模型数据集与代码实体ID、关系ID、训练样本详解
在信息技术行业,特别是在自然语言处理(NLP)和知识图谱研究领域,TransE模型具有重要意义。介绍了TransE模型的基本原理及其在知识表示学习中的应用。数据集包括entity2id.txt和relation2id.txt,分别记录了知识图谱中实体和关系的唯一标识符,用于模型训练和推理。同时,train.txt文件包含了训练数据,即事实三元组,用于模型学习实体之间的关系。附带的code.py文件提供了实现TransE模型的Python代码,包括数据预处理和模型训练的详细步骤。
数据挖掘
4
2024-07-17
包含空ID的Hive数据
这是一个名为 hive_have_null_id.tar.gz 的压缩文件。该文件包含 Hive 数据,其中某些记录的 ID 字段可能为空值。
Hive
10
2024-05-12
ID3的Matlab实现
使用Matlab进行ID3决策树算法的实现。
算法与数据结构
3
2024-05-20
数据库ID生成工具
ID生成器是一种便捷的工具,可用于快速生成数据库中所需的各种类型的ID。它支持多种ID类型,帮助用户轻松管理数据库记录。
SQLServer
2
2024-07-27
全国城市信息及ID清单
这份文件包含了全国各地城市的详细数据,包括城市名称及其对应的统计局ID,文件内部有JSON和SQL格式,可直接导入MySQL数据库。
MySQL
2
2024-07-30
ID3算法C语言实现
ID3算法的决策树学习过程目的是减少不确定性。如果选择属性A作为测试属性,它有性质a1,a2,a3,...,ai,当A=ai时属于第i类的实例数量为Cij。P(Xi;A=aj)表示测试属性A取值为aj时属于第i类的概率。Yj为A=aj时的实例集,则决策树对分类的不确定程度为训练实例集对属性A的条件熵:(3)(4)
数据挖掘
4
2024-04-29
决策树学习算法ID3
ID3(迭代二分器3)算法是一种经典的决策树学习方法,由Ross Quinlan于1986年提出。它专注于分类任务,通过构建决策树模型来预测目标变量。ID3算法基于信息熵和信息增益的概念,选择最优属性进行划分,以提高决策树模型的准确性。信息熵用于衡量数据集的纯度或不确定性,信息增益则是选择划分属性的关键指标。Delphi编程语言支持下的ID3算法展示了面向对象的实现方式。决策树模型直观地通过树状结构进行决策,每个节点代表特征,每个叶节点表示决策结果。
数据挖掘
0
2024-08-28
ID3算法C程序实现与优化
ID3算法C程序实现与优化
小组成员:* 何冬蕾 1011200136* 潘荣翠 1011200132* 李燕清 1011200128* 余燕梅 1011200135* 龙兴媚 1011200130
数据挖掘
5
2024-05-20
决策树ID3算法实例解析
决策树ID3算法实例解析
ID3算法原理
ID3算法的核心是信息增益。它通过计算每个属性的信息增益,选择信息增益最大的属性作为当前节点的划分属性。然后,根据该属性的不同取值,将数据集划分为若干子集,并递归地构建决策树。
实例解析
假设我们有一个关于天气和是否打高尔夫球的数据集:
| 天气 | 温度 | 湿度 | 风力 | 打高尔夫球 ||---|---|---|---|---|| 晴朗 | 炎热 | 高 | 弱 | 否 || 晴朗 | 炎热 | 高 | 强 | 否 || 阴天 | 炎热 | 高 | 弱 | 是 || 雨天 | 温和 | 高 | 弱 | 是 || 雨天 | 凉爽 | 正常 | 弱 | 是 || 雨天 | 凉爽 | 正常 | 强 | 否 || 阴天 | 凉爽 | 正常 | 强 | 是 || 晴朗 | 温和 | 高 | 弱 | 否 || 晴朗 | 凉爽 | 正常 | 弱 | 是 || 雨天 | 温和 | 正常 | 强 | 是 || 晴朗 | 温和 | 正常 | 强 | 是 || 阴天 | 温和 | 高 | 强 | 是 || 阴天 | 炎热 | 正常 | 弱 | 是 || 雨天 | 温和 | 高 | 强 | 否 |
首先,我们需要计算每个属性的信息增益:
天气:0.246
温度:0.029
湿度:0.151
风力:0.048
由于“天气”属性的信息增益最大,因此我们选择它作为根节点的划分属性。然后,根据“天气”的不同取值,将数据集划分为三个子集:
晴朗:{否,否,否,是,是}
阴天:{是,是,是,是}
雨天:{是,是,否,是,否}
对于每个子集,我们递归地应用ID3算法,直到所有子集都属于同一类别或者没有属性可供选择。最终,我们可以得到一个完整的决策树。
总结
ID3算法是一种简单高效的决策树算法,它可以用于分类和预测。通过实例解析,我们可以更好地理解ID3算法的原理和应用。
数据挖掘
4
2024-05-21