实战数据集

当前话题为您枚举了最新的实战数据集。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

ARIMA模型实战数据集
分享一个用于ARIMA模型学习的实践数据集,该数据集关联一篇博客中的代码案例,可用于模型学习和测试。
实战数据集data.rar
汇集多种格式数据,涵盖json、txt、csv等类型,助力项目开发学习。适用于scala、sparkstreaming等技术领域探索与实践。
Spark线性回归数据集实战:lpsa.data解析
通过对lpsa.data数据集的线性回归分析,可以深入理解Spark RDD编程接口的应用。 深入学习参考: Spark RDD论文详解(三)Spark编程接口
基于Hive的项目实战用户数据集优化
基于Hive的项目实战用户数据集格式为:上传者字符串, 视频数整型, 好友数整型。
MovieLens数据集
包含推荐系统算法开发和评估所需的用户评分、电影元数据和标签。
Lastfm数据集
标签推荐算法中常用的数据集,源自Lastfm。
PCA 数据集
该数据集包含 PCA 分析的数据。
MNIST 数据集
MNIST 数据集已打包,内含训练和测试数据。
Seaborn 数据集
包含 Seaborn 可视化库所需的所有基础数据集。
数据挖掘测试数据集iris、libras、多特征数据集
数据挖掘是从海量数据中提取有价值知识的过程,结合统计学、计算机科学和人工智能等多个领域技术。测试数据集在验证和评估模型性能中起关键作用。以下是几个经典数据集的详细介绍:1. Iris数据集:由Ronald Fisher在1936年收集,包含150个样本,每个样本属于三种鸢尾花中的一种,有4个特征。2. Libras数据集:针对手语识别,包含39种动作,由34个人执行,记录了每个动作的39个关节位置信息。3. 多特征数据集:通常用于回归、分类等任务,具有多种属性和特征,来自不同领域如金融、医疗等。这些数据集广泛用于学术研究和教育,帮助理解和掌握数据挖掘的核心概念和技术。