农业大数据
当前话题为您枚举了最新的农业大数据。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
农业大数据赋能交易所业务
数据挖掘助力交易、交割、结算业务精准化
大数据分析提升风控能力和新产品研发效率
数据挖掘
4
2024-04-30
基于大数据的农业应用探索
农业大数据是整合了农业的地域性、季节性、多样性和周期性等特征后产生的广泛数据集合,具有复杂结构和潜在价值,常规方法难以处理和分析。
算法与数据结构
0
2024-09-23
工业大数据分析实例
利用物联网数据服务平台,挖掘工业大数据,通过数据挖掘技术发现工业生产中的模式和趋势,实现优化生产、提高效率。
算法与数据结构
4
2024-05-01
2017工业大数据发展报告
这份报告深入探讨了2017年工业大数据领域的现状与趋势。它分析了工业大数据的应用场景、关键技术以及发展挑战,并为企业如何利用工业大数据提升效率、优化流程提供了宝贵的见解。
算法与数据结构
4
2024-05-15
工业大数据技术架构详解
工业大数据技术架构白皮书是一份详细说明工业领域内大数据技术架构及其应用的指导文件。它由工业互联网产业联盟的工业大数据特设组发布,反映了该领域内的最新研究成果和应用实践经验。白皮书不仅讨论了大数据技术在工业环境中的核心地位,还提供了实际案例和具体技术组件的介绍,以及工业大数据系统建设的意义、目标、重点问题、架构实现等多方面内容。根据白皮书的内容,我们可以了解到以下知识点: 1. 工业大数据的定义和重要性:指的是在工业生产、运营过程中产生的大量数据的集合。这些数据来源于设备、传感器、控制系统和生产管理系统等,具有“4V”特征——大容量(Volume)、高速度(Velocity)、多样性(Variety)和真实性(Veracity)。2. 工业互联网与大数据:强调数据在推进工业系统智能化变革中的基础性作用。3. 工业大数据技术架构:包括数据的采集与交换、集成与处理、建模与分析、决策与控制等几个层面。4. 数据采集与交换:涉及到各种数据源的数据提取和转换。5. 数据集成与处理:确保数据质量、清洗和格式化。6. 数据建模与分析:利用数据挖掘和机器学习等方法形成可操作的模型。7. 决策与控制应用:为决策提供支持,提升生产效率和质量。8. 技术发展现状:讨论了各种新兴技术的应用和实现情况。9. 法律声明和知识产权:强调未经授权许可不得擅自使用报告内容的法律义务。10. 编写单位和编写组成员:由工业互联网产业联盟牵头,多家知名研究机构和企业参与编写,确保了报告的权威性。
算法与数据结构
0
2024-10-31
山东农业大学Oracle作业16次优化方案
针对山东农业大学Oracle作业16次,设计优化方案。
Oracle
0
2024-09-30
华南农业大学数据库课程设计完整答案解析
华南农业大学2015年春数据库课程设计,提供详细答案解析,涵盖所有步骤和实例,包括exp和imp的具体应用示范。每个过程均附有截图,确保全面理解和实践操作。
Oracle
1
2024-07-16
软件专业大数据认知实习报告
这份报告记录了软件工程专业学生在大数据方向的认知实习过程与成果,展现了学生对大数据技术的初步理解和应用能力。
算法与数据结构
2
2024-05-27
工业大数据应用白皮书
这份白皮书深入探讨了大数据技术在工业领域的应用现状、挑战和未来趋势。内容涵盖了大数据在工业生产、供应链管理、产品生命周期管理等方面的具体应用案例,并分析了不同行业应用大数据的最佳实践。
Oracle
2
2024-05-29
西南农业大学学报论文及引文分析(1995年)新版本
通过文献计量学方法分析700篇论文和4458篇引文,平均引文量为7.0篇,无引率为8.6%。其中,期刊论文占67.4%,图书占26.7%,中文占60.1%,英文占38.6%。中文和外文文献中80.6%和36.8%发表时间在近10年内,中文和外文文献半衰期分别为6.3年和13.3年。该学报在29所农业院校中被引率位列第15。
统计分析
3
2024-04-30