商业周期

当前话题为您枚举了最新的 商业周期。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

MATLAB代码附件NCI模拟-“单词是新数字商业周期的新闻重合索引”
国家癌症研究所存储库中的MATLAB代码附录包含了以下研究文章的重制代码:“单词是新数字:商业周期的新闻重合索引”。这些代码演示了如何估计并使用混合频率时变动态因子模型(DFM),该模型在托尔斯鲁德和安德斯(2018年)的文章中开发和使用。这些模型是用于实时评估经济状况的工具,通过每日报纸主题数据和季度GDP增长数据提供商业周期的每日估计。
Matlab开发周期功率谱检测新周期与序列应用
Matlab开发:应用于检测最新周期和序列的周期功率谱。周期功率谱及其在DNA序列潜在周期检测中的应用。
周期性检测PMUCOS方法的视频周期性分析 - Matlab实现
本代码是基于Panagiotakis等人提出的PMUCOS方法的简单实现,用于发现视频中所有的周期性部分并估计它们的周期,完全无需监督。这些周期性片段可以存在于视频的任何位置,具有不同的持续时间、速度和周期,适用于各种对象(如人、动物、机器等)的运动模式。如需引用相关论文,请参考Panagiotakis等人在IEEE国际图像处理会议上的研究。
Matlab的周期减少工具箱优化整个驱动周期中的组件设计
这些功能允许用户将整个驱动周期内数千个机器操作点替换为更少的代表点。在优化机器或分析不同轧制循环性能时,这对于极大地加速过程至关重要。此外,工具箱还提供了详细的用户手册和测试脚本。
商业数据挖掘技术的商业定义及应用
商业数据挖掘是一种新兴的商业信息处理技术,其核心在于从大规模商业数据库中提取、转换、分析和建模,以获取支持商业决策的关键数据。随着技术的不断发展,这种技术正在成为商业决策过程中不可或缺的一部分。
商业智能概览
本指南提供商业智能的全面概述,涵盖以下主题: 商业智能简介 商业智能实施和数据仓库 商业智能项目 商业智能寻源 商业智能产品 数据通信 数据挖掘
商业智能概述
商业智能是一种信息技术应用,提升企业的决策质量和运营效率。它从大量数据中提炼出有价值的信息,并转化为可操作的知识,帮助企业制定战略决策。商业智能的出现源于20世纪80年代,随着信息管理系统的大规模应用,数据量急剧增长,市场竞争加剧,企业对更高级别的数据分析功能有了迫切需求。商业智能的发展经历了多个阶段,从方便获取数据到集中在查询报表、决策支持系统(DSS)和在线分析处理(OLAP),再到与数据仓库及其分析方法紧密相连。商业智能系统包括数据层、数据整合层、数据存储层和分析应用层。数据仓库是其关键组成部分,具有面向主题、数据集成、不可修改和时间相关等特点。商业智能的核心功能包括数据管理、数据分析、知识发现和企业优化,其中OLAP提供多维数据分析,帮助用户深入理解数据。商业智能的实施面临挑战,如数据可靠性、用户界面友好性和避免过度复杂化。市场上的商业智能解决方案供应商包括SAP、IBM、Oracle、Microsoft等,它们利用先进技术将数据转化为业务洞察,助力企业提升竞争优势。
商业智能系统概述
本PPT简介了商业智能(BI)系统,包括Smart Evision和Smart Query两大核心组件。
Oracle商业智能详解
这本书详尽介绍了Oracle商业智能的各个方面,对于想要深入了解Oracle商业智能的读者来说是一本非常有价值的资料。
商业智能BI概述
商业智能(BI)是Business Intelligence的简称,最早于1996年提出。其定义为一种利用数据仓库、查询报表、数据分析、数据挖掘等技术,帮助企业优化决策的信息技术应用。BI系统基于数据仓库,集成了订单、库存、交易记录等数据,支持数据的预处理和ETL过程,确保数据质量。OLAP技术支持多维数据分析,数据挖掘则利用统计学和机器学习算法发现数据背后的规律。BI系统还包括报告和仪表板功能,以直观图形展示数据,支持预测分析和人工智能技术,提升决策的前瞻性。商业智能体系架构包括数据源、ETL工具、数据仓库、OLAP服务器、数据挖掘工具、报表分析工具和用户界面,全面支持企业的决策需求。