法律风险
当前话题为您枚举了最新的 法律风险。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
机器学习在法律领域的革新应用
探讨了机器学习技术在法律实践中的新应用。广义上讲,“机器学习”是指计算机算法能够随着时间的推移在某些任务上“学习”或提高性能。通常,机器学习算法检测数据中的模式,然后将这些模式应用于新数据以自动执行特定任务。除法律以外,机器学习技术已成功用于自动化原先被认为需要人类智能的任务,例如语言翻译、欺诈检测、驾驶汽车、面部识别和数据挖掘。首先以非技术受众可以理解的方式解释了机器学习方法的基本原理。第二部分探讨了一个更广泛的问题:虽然法律实践被认为需要高级认知能力,但这种认知能力仍然超出了当前机器学习技术的能力。本部分确定了一项核心原则:通常可以通过使用非智能计算技术来自动化通常被认为需要人类智能的某些任务,这些非智能计算技术采用能够产生有用的“智能”的启发式或代理(例如统计相关性)结果。第三部分将这一原理应用于法律实践,讨论了机器学习在预测法律案件结果、在法律文件和数据中发现潜在关系、电子发现以及文件自动组织等方面的自动化应用。
数据挖掘
0
2024-08-22
Shapley 风险分解
给定协方差矩阵和权重向量,函数将返回每个资产的 Shapley 风险分解值。此外,还会计算 Euler 风险分解值以作对比。
Matlab
4
2024-05-25
国际范围的自动化法律引用器:LawCite项目
来自12家非营利法律信息提供者的合作,免费提供国际案例法和法律奖学金的自动化引用,无需用户费用。LawCite项目由澳大利亚法律信息研究所开发,包含近500万个案例、法律文章、法律改革文件和条约的引用记录。
项目采用3个数据库:- 引用数据库:基本引用信息- 系列数据库:法律报告、法律期刊、条约和法律改革报告信息- 文件数据库:案例或期刊文章的XML记录
原始引文清单由参与的LII和非LII数据源收集,然后由“Unminer”分析、合并和归一化,从合并后的列表中生成LawCite数据库。
LawCite引用程序使用这些数据库和文本标记,为用户提供引用功能。
数据挖掘
3
2024-05-25
探讨人工智能背景下法律转型的议题
随着人工智能技术的飞速发展,法律领域正在经历深刻的变革。人工智能的普及使得法律实践和理论面临新的挑战和机遇。
MySQL
2
2024-07-31
金融模型风险密度探索
利用 MATLAB 开发的高级金融模型,深入了解期权定价中的风险中性密度。
Matlab
2
2024-05-25
大数据AI中的数字思想克隆:法律和伦理影响
大数据通过追求个性化消费者数据,催生了数字思想克隆,以预测和获利。这引发了法律和伦理问题,需要类似GDPR的立法保护个人免受数据的滥用和未经授权的数字思想克隆。
数据挖掘
2
2024-05-16
2021年隐私计算法律合规研究白皮书
云大发布的研究报告探讨了2021年隐私计算法律合规的关键问题。
算法与数据结构
2
2024-07-16
数据挖掘助力商户风险评分
该系统运用数据挖掘技术,通过对海量数据进行分析,构建商户风险评分模型,帮助金融机构识别和评估商户风险,提升风控效率。
数据挖掘
6
2024-05-25
信用风险评分卡研究
使用 SAS 语言从头到尾详细介绍评分卡开发与实施,附带 SAS 宏代码示例。
数据挖掘
2
2024-05-25
计算风险价值 (VaR) 的方法
计算风险价值 (VaR) 的方法
本部分探讨几种计算风险价值 (VaR) 的常用方法:
数据可视化与标准化: 在进行 VaR 计算之前,对数据进行可视化分析和标准化处理至关重要。数据可视化帮助识别数据特征和潜在风险,而标准化则确保不同风险因素对 VaR 计算的影响一致。
历史模拟法: 历史模拟法是一种非参数方法,直接利用历史数据模拟未来的收益率分布。通过对历史收益率进行排序,可以得到不同置信水平下的 VaR 值。
基于随机收益率序列的蒙特卡罗风险价值计算: 蒙特卡罗模拟是一种强大的工具,可以模拟各种复杂的风险场景。通过生成大量的随机收益率序列,可以估计投资组合在不同情景下的潜在损失,进而计算 VaR。
基于几何布朗运动的蒙特卡罗模拟: 几何布朗运动是一种随机过程,常用于模拟资产价格的走势。通过假设资产价格服从几何布朗运动,可以利用蒙特卡罗模拟估计 VaR。
Matlab
3
2024-05-28