学科主题

当前话题为您枚举了最新的 学科主题。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

共词分析法:揭示学科主题关联网络
共词分析法,通过分析文献中词汇对或名词短语的共现情况,揭示学科主题之间的关联。词汇对在同一文献中出现的频率越高,表明这两个主题的关系越紧密。 具体而言,共词分析法统计一组文献主题词两两之间在同一文献出现的频率,构建共词网络。网络中节点之间的距离反映主题内容的亲疏关系。 该方法利用包容系数、聚类分析等统计手段,将复杂的共词关系转化为直观的数值和图形,清晰地呈现主题词之间的关联。
PARTY主题与其他主题的关联关系
PARTY主题与其他主题的关联关系 当事人与账户的关系 外部编号 历史和事件的关系 与产品的关系 地址信息历史
学科专业数据库(MySQL)
这份数据是根据当前学科专业的分类而生成的MySQL表格格式,用户可以直接运行以生成该表。
自定义 RStudio 主题
该主题根据 Spyder 的风格修改,提供给偏好 Spyder 风格的用户。使用说明请查阅相关文档。
WallPress 主题:瀑布流布局
该主题采用瀑布流布局设计,为用户提供独特的内容浏览体验。主题现已开放分享,欢迎下载体验。
客户信息主题维度设计模型
客户基本信息模块 模块功能: 用于分析客户数量和客户属性。 事实表: 客户信息事实表 度量: 客户数量 数据粒度: 每个客户每月计算一次收益,事实表每条记录代表一个客户的属性。事实表存放一年以内的数据,超过十年的数据按月滚动,最初的数据汇总后从事实表卸出。 相关维度: 客户详细资料维度 客户性别维度 客户年龄层次维度 客户在网时间维度 客户消费层次维度 客户信用度层次维度 是否大客户维度 交费类型维度 地理维度 客户流失概率层次维度 客户挽留价值层次维度 成为大客户概率层次维度
电信行业数据挖掘应用主题
客户洞察与分析- 客户行为细分模型- 客户流失倾向预警模型- 价格敏感度模型风险管理与信用评估- 客户信用评分模型营销优化与精准推荐- 交叉销售模型- 营销效果预测模型- 精确营销模型
Kafka主题管理工具
“kafka的topic小工具”指的是一个用于管理和操作Kafka主题的实用程序。它提供了用户友好的界面或命令行工具,简化了在Kafka集群上执行管理任务的过程。Kafka是一个广泛应用于大数据实时处理和消息传递的分布式流处理平台。该工具能够连接到运行中的Kafka集群,查看所有主题的详细信息,包括分区数量、副本配置等。用户可以通过工具创建新主题,并设置相关的配置参数。此外,工具还支持删除不再需要的主题和实时监控数据流入流出情况。通过这些功能,用户可以有效管理和优化他们的Kafka环境,确保数据的正确存储和流动,同时提升系统的稳定性和效率。
ASP学科建设设计-课程设计
随着信息时代的迅猛发展,传统的人工管理已无法满足当前信息管理需求的急剧增长。因此,建立一个智能化的学科建设信息管理系统成为迫在眉睫的任务。该系统综合管理高校学科建设所需的各类信息,涵盖教学、科研、高层次学位管理、设备条件、图书资料建设及学术交流等多个方面。通过互联网快速查询,提高了信息管理的效率和保密性。还探讨了通用报表组件的研发过程,增强了用户与系统数据互动的能力,克服了传统报表的限制。在详细需求分析的基础上,确定了系统的功能要求、性能要求,并选择了最适合的系统模型和网络拓扑结构,优化了数据库设计。系统采用B/S与C/S相结合的软件体系结构,面向对象的开发方法,结合关系型与分布式数据库技术,增强了系统安全性和数据库完整性,包括用户权限分配、数据加密、存储过程及触发器等技术手段。
大学学科分类数据库.xlsx
大学学科分类具有13个主要门类,包括军事学。它采用三级联动结构,方便直接导入数据库使用。该数据库为大学教育提供了系统化的分类和管理工具。