公平竞争

当前话题为您枚举了最新的 公平竞争。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

公平的席位分配优化模型-离散模型(1)
公平的席位分配优化模型MF法:最大剩余法(GR)实际上解决了以下优化问题:你能证明这些结论吗?任意lt范数(t≥1),如:1, 2, ∞范数EP法:
解决oracle库缓存闩竞争的方法
确定系统运行缓慢的原因:从v$session_wait视图中选择等待事件不是'client message'且不包含'%NET%'的会话,等待时间为0且会话ID大于5。
Kohnen竞争学习神经网络MATLAB开发
执行M文件,这是Kohnen竞争学习神经网络的学习算法。
InFoRM 图挖掘中的个人公平性Python实现
InFoRM,即图挖掘中的个人公平性的Python实现,针对PageRank、频谱聚类和LINE任务,体现了我们在KDD 2020年论文中的研究成果。我们提供了Python 3(> 3.7)的实现,涵盖了斯克莱恩网络数据的加载和PPI数据集的演示。此外,方法文件夹中提供了三种去偏置方法,包括消除输入图和采矿模型的偏见。
基于竞争学习的HMMs聚类方法研究论文
针对当前主流数据库审计系统存在的审计信息冗余、不灵活的审计配置方式以及数据统计分析能力不足等问题,我们提出了一种创新的数据库安全审计系统。该系统可以有效约简审计信息,支持灵活的审计配置,并能够有效检测潜在的数据库攻击,为数据库安全防护提供实用的解决方案。
Matlab代码人口增长模型中的竞争干扰
这是与通过垫料生产产生的竞争干扰理论相关的人口增长模型Matlab代码存储库。提供的代码包括:1. 用于连续时间模型及其变体分析、模拟和结果展示的工具;2. 用于离散时间年度-多年生模型及其变体分析、模拟和结果展示的代码;3. 用于准确重现图形的颜色映射。
纳什解matlab代码-多标准降维:探索公平性
本代码库包含论文“多标准降维及其对公平性的应用”的代码实现。 .py 文件功能:- 预处理数据- 标准 PCA 及公平性实用标准计算- 解决特定目标函数的 SDP 问题- 使用乘法权重更新方法- 其他辅助方法 Jupyter Notebook 功能:- 演示如何将不同 PCA 策略(例如,公平的基于 SDP 的 PCA 与标准 PCA)应用于数据集(信贷和收入数据)。- MW 笔记本使用 MW(乘积权重更新)代替 SDP 求解器来实现公平的基于 SDP 的 PCA。 使用方法:- 打开并运行 Jupyter 笔记本(例如,SDP_credit.ipynb 或 'additional-heur
基于数据挖掘的煤炭企业协同办公平台的研究
在煤炭行业信息化进程中,针对煤炭企业办公自动化系统的研究现状,提出了构建协同办公平台的方案。详细介绍了该平台的总体架构,阐述了各层面及保障体系,以及数据挖掘技术在平台应用的重要性。经过潞安集团和同煤集团的实证应用,显示协同办公平台显著提升了煤炭企业的工作效率和管理水平,具备广泛推广应用的潜力。
如何解决Matlab代码无法运行的问题 - 职业公平目录指南
Tool_guide.docx文件包含相同的指令和图像。这个目录长期以来一直是职业博览会的核心内容,自90年代中期以来样本一直显示着其发展历程。随着公司数量的增加,以一种可靠且一致的方式向与会者提供数据的挑战增加,这给策划人员带来了沉重的负担,并导致了一些因各种原因而产生的问题。2013年,他们决定创建一个简便的工具,该工具可以将注册数据整理成可用的目录,无需人工干预。这一工具不断发展,现在还能生成活页夹封面和公司数据的HTML表格。此外,还有用户指南,尽管使用较少。显然,这是一份不断适应工具增长多年来的活跃文档。建议使用Python 2.7作为必需软件,它是一种开源的计算机脚本语言,与Mat
价值驱动型商业分析:打造可持续竞争优势
当今企业战略核心聚焦于客户和股东价值。然而,分析技术往往过度关注复杂的技术和统计数据,而忽视了长期价值创造。Verbeke、Bravo 和 Baesens 合著的《Profit-Driven Business Analytics》一书恰逢其时地提出了一种亟需的转变:将分析技术发展为成熟的、增值的工具。该书建立在作者团队丰富的研究和行业经验之上,对于任何希望利用分析技术创造价值并获得可持续战略优势的人来说都是必读之作。尤其在当今这个可持续价值创造的新时代,追求长期价值必须由可持续发展的强大组织来推动。随着公民参与和社会贡献逐渐成为关键的战略支柱,企业雇主的角色也在不断演变。