投资回报率

当前话题为您枚举了最新的投资回报率。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab代码实现投资回报率HMMROIwiseHMM
本存储库包含了我们实现的ROIwiseHMM的Matlab代码。这个模型的详细信息可以在文档中找到。如果您打算在自己的项目中使用此代码,请引用我们的论文: @article{JUN2018, title = \"Modeling regional dynamics in low-frequency fluctuation and its application to Autism spectrum disorder diagnosis\", journal = \"NeuroImage\", year = \"2018\", author = \"Eunji Jun and Eunsong Kang and Jaehun Choi and Heung-Il Suk\" }。您可以在此下载HMM工具箱,它支持混合高斯输出的HMM的推理和学习。
灰度运行长度矩阵在Matlab中的开发与投资回报率关系分析
该程序通过在图像中手动选取感兴趣区域,计算出七个纹理参数:1. 短期重点(SRE) 2. 长期强调(LRE) 3. 灰度不均匀性(GLN) 4. 跑动百分比(RP) 5. 运行长度不均匀性(RLN) 6. 低灰度运行强调(LGRE) 7. 高灰度运行强调(HGRE),并与投资回报率进行了关系量化。
LSTM 回报预测脚本
LSTM-ReturnPrediction.py 用于利用长短期记忆网络 (LSTM) 来预测时间序列的未来回报。LSTM 擅长处理顺序数据,使其成为预测未来趋势的理想工具。该脚本可以应用于金融或其他时间序列分析领域。
资产回报的多重分形模型(MMAR)基于乘法对数正态级联模拟的资产回报模型-MATLAB开发
利用乘法对数正态级联模拟资产回报的多重分形模型,该模型基于B. Mandelbrot的资产收益多重分形理论,当前实现采用了B. Scott Jackson的分数布朗运动生成器。
数据挖掘助推量化投资
利用数据挖掘技术,挖掘数据背后的价值,为量化投资提供科学依据和策略支撑。
跨境投资组合管理利器
由于工作原因,我的投资账户分散在不同国家和经纪商,涉及多种货币(GBP、SGD、HKD)。向雇主合规部门报告个人账户交易一直是手动操作,非常耗时。我也无法清晰了解整体投资组合的绩效和构成,从而做出明智的投资决策。 为此,我自主开发了投资组合分析工具,整合我在各个国家和经纪人之间的所有交易。该工具通过 API 连接 Yahoo Finance 获取市场数据,帮助我有效管理跨境投资组合。
项目投资与评估概述
项目投资与评估包括项目实施情况评估、项目环境变化评估、项目未来发展预测等多个方面。项目跟踪评估的重要性体现在项目可行性评估、项目实施保障、项目变更条件等方面。项目绩效度量的方法包括目标对照、统计分析、内外结合原则,并且明确区分内部与外部原因。综合考虑问题与对策评估的原则,强调监测性、动态性、阶段性、控制性与集成性特征。
期权杠杆率与隐含波动率计算
期权杠杆率计算 期权杠杆率衡量期权价格对标的资产价格变动的敏感程度。 公式: 期权杠杆率 = 期权价格变化百分比 / 标的资产价格变化百分比 隐含波动率计算 隐含波动率是市场对期权标的资产未来波动率的预期,通过期权价格反推得出。 方法: 通常使用期权定价模型(如 Black-Scholes 模型)进行迭代计算,找到与当前市场价格相符的波动率参数。
计算投资组合欧米伽
该项目提供了计算投资组合欧米伽值的 Matlab 函数。
寿险保单投资选择因素研究
印度的保险业正以合资企业的形式蓬勃发展,在国内和全球范围内都有众多参与者,并且随着业务的指数增长而引人注目。尽管注入了印度政府的一些法规,但随着越来越多的投资者和相当数量的新保险公司加入该行业,保险业一直在取得巨大进步。目前,该行业有24家国内外公司。在印度,保险仍然被认为是一种节税工具,而不是一种投资选择。本研究分析了海德拉巴市寿险保单中影响投资者选择的因素。具体目标是找出投资者的年收入与影响消费者对寿险保单投资选择的因素之间是否存在关联。在卡方检验的帮助下,对75名保险投资者的数据进行了统计分析,研究发现,年收入与影响投资者对寿险保单投资选择的因素之间没有显著关联。建议大多数投资者应该将保险单视为风险保护和多方面的投资选择,而非仅仅是节税工具。作者还指出,小样本的局限性可能不能完全反映保险公司的全部政策决定。因此,研究结果应与当前行业趋势相关联。