eGRID 数据集
当前话题为您枚举了最新的eGRID 数据集。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
eGRID to RDF:将美国环保局 eGRID 数据集转换为 RDF
将美国环保局 eGRID 数据集转换为 RDF 格式,以便进行复杂的数据查询。eGRID 数据集可从美国环保局网站下载。第一步,使用 R 语言下载相关文件并合并为 CSV 文件。第二步,使用 Google Refine 加载 CSV 文件,并创建新项目。第三步,使用此存储库中的 JavaScript 脚本将数据映射到 RDF 格式。
数据挖掘
4
2024-05-13
MovieLens数据集
包含推荐系统算法开发和评估所需的用户评分、电影元数据和标签。
算法与数据结构
6
2024-05-01
Lastfm数据集
标签推荐算法中常用的数据集,源自Lastfm。
spark
3
2024-05-15
PCA 数据集
该数据集包含 PCA 分析的数据。
数据挖掘
3
2024-05-15
MNIST 数据集
MNIST 数据集已打包,内含训练和测试数据。
算法与数据结构
4
2024-05-26
Seaborn 数据集
包含 Seaborn 可视化库所需的所有基础数据集。
算法与数据结构
3
2024-05-28
数据挖掘测试数据集iris、libras、多特征数据集
数据挖掘是从海量数据中提取有价值知识的过程,结合统计学、计算机科学和人工智能等多个领域技术。测试数据集在验证和评估模型性能中起关键作用。以下是几个经典数据集的详细介绍:1. Iris数据集:由Ronald Fisher在1936年收集,包含150个样本,每个样本属于三种鸢尾花中的一种,有4个特征。2. Libras数据集:针对手语识别,包含39种动作,由34个人执行,记录了每个动作的39个关节位置信息。3. 多特征数据集:通常用于回归、分类等任务,具有多种属性和特征,来自不同领域如金融、医疗等。这些数据集广泛用于学术研究和教育,帮助理解和掌握数据挖掘的核心概念和技术。
数据挖掘
2
2024-07-16
Matlab边缘检测源码-highD数据集先进D数据集
Matlab边缘检测源码的高级工具库包含了处理在Matlab和Python中实现的highD数据文件的功能集合。这些功能涵盖了从数据处理到数据可视化的广泛范围。
Matlab
0
2024-09-28
博客数据集分析
基于 Python 数据挖掘的聚类实验,使用 Kiwitobes 的博客数据集,分析了单词在不同博客中的出现频率,并利用 K-means 算法对其进行了聚类。
算法与数据结构
4
2024-04-30
垃圾分类数据集
Gary Thung 和 Mindy Yang 收集的图像数据集,用于垃圾分类任务。有助于了解垃圾分类方法,指导普通民众科学处理垃圾,提高城市环境质量。
算法与数据结构
5
2024-05-01