人体跟踪

当前话题为您枚举了最新的 人体跟踪。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

基于卡尔曼滤波的人体跟踪程序
该程序利用卡尔曼滤波算法,实现了对运动目标的跟踪功能。适用于目标运动轨迹符合线性模型,且过程和观测噪声符合高斯分布的场景。
基于Matlab的人体识别与跟踪算法实现
该程序算法思想实现了基于视频的人体识别与跟踪,适用于安防监控产品的开发。
SimplePointPose: 用于人体姿态估计和跟踪的简洁基准
SimplePointPose 是一个用于人体姿态估计和跟踪的简洁高效的基准代码库,基于 PyTorch 实现,并在 COCO 关键点数据集上取得了出色成果。 主要特点: 提供一个简单有效的基线方法,有助于激发和评估该领域的新想法。 在具有挑战性的基准测试中取得优异结果,例如,在 COCO 关键点数据集上,最佳模型达到 74.3 mAP。 提供所有模型供研究使用。 MPII 验证集结果: | 指标 | 头部 | 肩膀 | 手肘 | 手腕 | 臀部 | 膝盖 | 脚踝 | 平均 || :----------------------: | :--: | :--: | :--: | :--: | :--: | :--: | :--: | :--: || 均值@0.1 (256x256) | 96.3 | 95.3 | 89.0 | 83.2 | 88.4 | 8 | - | - |
OpenPose:人体关键点检测
OpenPose 是一个实时人体关键点检测系统,可检测人体、手部和面部关键点(共 130 个)。先决条件:安装 CUDA、cuDNN、CMake GUI、protobuf 编译器。创建 Conda 环境,并安装 OpenCV、protobuf。克隆 OpenPose 存储库,并使用 Caffe 构建。
人体骨骼关键点检测算法综述
人体骨骼关键点检测算法在计算机视觉领域应用广泛,包括自动驾驶、姿势估计、行为识别等。由于人体的柔韧性和遮挡等因素影响,人体骨骼关键点检测极具挑战性。算法主要分为单人2D、多人2D、3D关键点检测。Heatmap方法用概率图表示关键点位置,越接近关键点位置,概率越高。
MATLAB中人体心电图数据处理示例
该存储库包含MathWorks的Wavelet Toolbox和深度学习示例中使用的人体心电图数据。为了遵守PhysioNet的复制策略,数据被修改并包含详细描述。示例代码适用于最新版本的MATLAB。
Matlab图像目标跟踪
作为练习使用,这里提供了三个小文件,用于Matlab的图像目标跟踪实验。这些文件帮助用户熟悉目标跟踪技术的基本概念和应用方法。
cameanshift跟踪程序优化
优化cameanshift的跟踪程序,操作简便,注释清晰明了。
mean shift目标跟踪
使用Matlab实现meanshift算法进行目标跟踪。
Matlab细胞轨迹跟踪代码
此存储库包含用于Matlab的灰度处理和细胞跟踪的源代码。该程序支持荧光或暗场电影的处理,以及相衬电影的跟踪。兼容Matlab 2018a及更早版本,支持'.tif'堆栈和'.nd2'文件格式。还提供适用于Linux的版本。