管壁粗糙度

当前话题为您枚举了最新的管壁粗糙度。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

管壁粗糙度修正
在通道设计中,管壁粗糙度会影响流体的流动特性。为了考虑粗糙度对压降计算的影响,需要对压降公式进行修正。修正方法是引入粗糙度系数,将实际管道中带粗糙度的压降换算成等效光滑管道中的压降。
特定区域径向平均表面粗糙度功率谱计算
在表面粗糙度分析中,功率谱密度图可用于特征表征。有时,仅需要分析地形的特定区域。本代码可计算用户指定的表面地形区域的径向平均表面粗糙度功率谱。
使用Matlab计算粗糙集的下近似属性依赖度和条件熵
在Matlab环境下,计算粗糙集的下近似属性依赖度和条件熵的方法。
粗糙集属性约简调研
本调研分析了粗糙集理论中属性约简的方法,为大学生理解这一概念提供了指南。
粗糙集约简飞机故障诊断
应用变精度粗糙集简化飞机发电机故障诊断,通过下近似集判定定理和决策约简规则提取有效信息。采用决策表、约简规则和专家经验构建决策约简表,验证了该方法的准确性和普适性。
粗糙集理论与SPSS Clementine应用
粗糙集的不确定信息的思路,真的挺有意思。对于你做数据挖掘、预啥的,是遇上缺失值、异常值一堆的时候,这玩意儿还挺顶用的。粗糙集理论,是 80 年代 Zdzisław Pawlak 提出来的,嗯,别看时间早,现在用起来也不老气。它主要帮你从数据里找出哪些信息是模糊的、冗余的、不确定的,筛一筛、减一减,预效果还不错。信息系统、属性约简、等价类这些概念听起来有点抽象?其实蛮简单。比如你要选出对最终分类最有用的属性,就可以用它做属性约简,把没啥用的干掉,训练快,还能避免过拟合。而且像那种缺值太多、分类模糊的老大难数据,用粗糙集来,还真挺合适。它的规则都是类似“如果...那么...”这种,写得明明白白,你
粗糙集理论的学术探索与研究
粗糙集理论是处理不确定、不完整、不一致知识的数学工具,由Z. Pawlak于1982年提出,解决现实世界中的不确定性问题。该理论在数据挖掘、机器学习等领域广泛应用。不可区分关系是其核心概念之一,用于描述对象间的相似性。信息系统(I = (U, A, V, F))定义了论域、属性集合和属性值域之间的关系。上下近似集则描述了集合的不确定边界。
基于粗糙集的文本分类研究
文本分类里的维度问题,真的是老大难了。高维特征又多又乱,模型跑得慢不说,准确率还不稳定。粗糙集理论就挺能这个问题的,专门干降维这种脏活累活,精度还不掉。文中讲得挺全,从上近似、下近似这些基础概念,到怎么做知识约简,都说得清清楚楚。文本特征一多,像VSM 模型那种传统方法就开始吃力了。你用过支持向量机或KNN的应该懂,一不小心就爆内存。用粗糙集前先做停用词过滤和分词,后面再靠它筛关键特征,效率能提升不少。我觉得这篇 PDF 最实用的地方在后半部分,做了个案例对比实验,直接把传统方法跟粗糙集做的模型效果摆一块,哪种更稳一目了然。你要是项目里正好卡在特征维度上,建议真看看。顺手还能参考下里面推荐的特
偏度与峰度
偏度描述变量分布形态不对称的方向与程度,由样本偏度系数表示。
粗糙集属性约简与规则提取课件
粗糙集的课件,内容还挺硬核的,适合你想搞清楚什么是属性约简、规则提取的时候看看。讲义是老师内部整理的,资料挺系统,从 RS 理论的起源讲到怎么落地用在数据挖掘里,跨度大但逻辑清楚。粗糙集的核心是不完整信息,说白了就是你数据不全、样本有噪声,它还能帮你找出哪些字段最关键。比如你做一个问卷,字段一堆,但真正影响结果的就仨,RS 就能帮你找出来。属性约简和规则提取这块讲得还不错,配了例子,思路清晰,代码量也不大,适合自己动手跑一跑。数据挖掘方向的朋友,是对规则挖掘感兴趣的,可以顺手看看这篇《基于扩展粗糙集的近似概念格规则挖掘》,思路还蛮新颖的。如果你更关注算法落地,可以看看这个《基于 MapRedu