hive.exec.parallel
当前话题为您枚举了最新的 hive.exec.parallel。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
SSD7_exec6答案
数据库实验答案
PostgreSQL
4
2024-04-29
MATLAB Development-Mandelbrot Set with Parallel Computing Toolbox
MATLAB development - Mandelbrot set with Parallel Computing Toolbox. This example demonstrates how to fully leverage the Mandelbrot set using parallel computing techniques in MATLAB to improve performance for large-scale computations. Parallel processing allows the algorithm to run faster by utilizing multiple cores to handle different parts of the set simultaneously, speeding up the visualization and exploration of fractals.
Matlab
0
2024-11-06
Parallel_Computing_University_of_Science_and_Technology_China_Lecture_Slides
并行计算 (中科大讲义) 提供了一系列关于 并行计算 的关键概念、模型与实现策略。本讲义从并行计算的基本原理开始,深入探讨了如何利用 多核处理器 实现高效计算。包括数据并行、任务并行等模型,并展示了 并行算法 的设计原则与优化方法。此外,讲义中还详细阐述了常用的并行计算工具、编程模型(如 MPI、OpenMP)以及 性能评估 的方法,为学习者提供了全面的并行计算知识框架。
算法与数据结构
0
2024-10-30
Adjusted_Mutual_Information_Parallel_Computation_in_R_for_Clustering_Evaluation
该存储库提供了用于在R中计算聚类之间的调整后的互信息(AMI)、归一化的互信息(NMI)和调整后的兰德指数(ARI)的代码。NMI和ARI是广泛应用且成熟的分区一致性度量标准,而AMI提供了一种归一化互信息度量,通过计算观察到的群集大小分布的预期互信息(EMI)来校正随机预期的分区重叠基线值。这种度量标准有助于更精确地评估聚类效果,特别是在具有不均匀分布或不同规模的聚类中。
该存储库的代码可高效并行计算这些指标,特别适用于生物学应用,例如在将微生物宏基因组序列数据聚类成OTU时评估分区一致性。提供的数据集包含大约1M序列,通过完整链接或平均链接聚类方法,将其聚集成OTU。两个分区结果以每行一行的格式保存,分别为“otu映射”和“seq映射”。这些代码适用于任何类型的聚类数据,序列聚类到OTU仅是其中一个应用示例。
Matlab
0
2024-11-05
SQL Server中EXEC与SP_EXECUTESQL的不同之处
SQL Server提供了两种执行动态SQL语句的命令,分别是EXEC和SP_EXECUTESQL。我们先建立一个表,并添加一些数据进行演示:CREATE TABLE t_student(Id INT NOT NULL, Name NVARCHAR(10) NULL, Age TINYINT NULL, School NVARCHAR(20) NULL, Class NVARCHAR(10) NULL, Score FLOAT NULL, CONSTRAINT [PK_Student_Id] PRIMARY KEY CLUSTERED(Id)); INSERT INTO t_student VALUES(1, '张小红', 8, '育才小学', '一班', 92); INSERT INTO t_student VALUES(2, '王丽丽', 8, '育才小学', '一班', 90); INSERT INTO t_student VALUES(3, '张燕', 7, '云华小学', '二班', 86); INSERT INTO t_student VALUES(4, '刘华', 6, '云华小学', '二班', 85); EXEC命令可以用于执行存储过程或动态SQL语句。我们来看看怎么执行存储过程SP_GetStudent,该存储过程返回成绩大于90分的学生:CREATE PROCEDURE [dbo].[Sp_GetStudent] @Score FLOAT, @Nums INT OUTPUT AS BEGIN SET NOCOUNT ON; SELECT * FROM t_student WHERE Score >= @Score; SELECT @Nums=COUNT(1) FROM t_student WHERE Score >= @Score; IF(@Nums > 0) RETURN 1; ELSE RETURN 0; END; 用EXEC命令调用存储过程的示例:DECLARE @return_value int, @OutNums int; EXEC @return_value = [dbo].[Sp_GetStudent] @Score = 90, @Nums = @OutNums OUTPUT;
SQLServer
0
2024-07-26
如何在AWS上使用CloudFormation搭建MATLAB Parallel Server
在Amazon Web Services(Linux VM)上使用MATLAB Parallel Server前,请确保满足以下条件:
MATLAB Parallel Server许可证。有关云端许可证配置的信息,请参见相关文档。
使用网络许可证管理器为您的集群提供足够的MATLAB Parallel Server许可证。
确保您拥有桌面上的MATLAB和Parallel Computing Toolbox,并与所选MATLAB版本相匹配。
拥有具有所需权限的AWS账户,详细信息请查看相关服务文档。
在您所选区域内的AWS账户中配置SSH密钥对。如果还没有密钥对,请按照指示创建一个。
注意:使用本指南创建的云资源将产生相应的费用,请自行承担相关费用。
Matlab
0
2024-11-04
Hive文档
这是一份关于Hive的数据文档。
Hive
4
2024-05-12
Hive概述
Apache Hive是一种数据仓库工具,基于Hadoop构建,用于存储、查询和管理大型数据集。它提供了类似于SQL的接口,使非编程人员能够轻松处理Hadoop中的数据。
Hadoop
5
2024-05-19
Hive调优总结文档-Hive Tuning PPT
Hive是Apache Hadoop生态系统中的数据仓库工具,允许用户使用SQL方言(HQL)对存储在HDFS上的大规模数据进行查询和分析。在大数据处理中,Hive性能优化是关键环节,以提高查询速度和系统资源利用率。以下是对Hive调优总结文档-Hive Tuning PPT中可能涉及的多个知识点的详细阐述:
元数据优化:
分区策略:根据业务需求设计分区字段,减少不必要的数据扫描,例如按日期、地区等分区。
桶表:通过哈希函数将数据分布到预定义的桶中,提高JOIN操作的效率,尤其是等值JOIN。
物理存储优化:
列式存储:Hive支持ORC、Parquet等列式存储格式,列式存储能有效减少I/O,因为查询通常只需要访问部分列。
压缩:启用数据压缩,如Snappy、Gzip或LZO,可以减少存储空间并提高读取速度。
数据倾斜:注意数据分布的均匀性,避免某些分区或桶中的数据量远大于其他。
查询优化:
JOIN优化:避免全表JOIN,尽可能利用分区JOIN和桶表JOIN。使用MapJOIN,对于小表可以将其加载到内存中,避免昂贵的Shuffle JOIN。使用Broadcast JOIN,如果可能,将小表广播给所有Reduce任务,减少网络传输。
GROUP BY与ORDER BY:如果可能,避免全局排序,尽量使用DISTRIBUTE BY和CLUSTER BY来控制数据的分发和聚集。
子查询优化:避免嵌套子查询,尝试重写为更高效的JOIN或临时表。
执行引擎优化:
Tez与Spark:考虑使用Tez或Spark作为执行引擎,它们提供了更高效的执行模型,比默认的MapReduce更快。
动态分区:在插入数据时,动态分区可以提高效率,但需谨慎设置分区的采样条件。
资源管理:
YARN配置:调整Map和Reduce任务的内存、CPU设置,确保资源的有效利用。
Hive配置:设置合适的mapreduce.job.maps和mapreduce.job.reduces以平衡计算资源和任务数量。
Hive
2
2024-07-12
Hive安装指南(linux_hive windows_mysql)
Hive是一个建立在Hadoop基础上的数据仓库工具,专用于存储、查询和分析大数据。为了成功安装和配置Hive,必须满足一系列的前提条件和环境要求。以下是详细的Hive安装指南:1. 环境准备:Hive的安装依赖于Hadoop环境,因此首先需要安装Hadoop系统(本示例中使用版本为Hadoop 3.2.0)。同时,为了提供元数据库服务,需要在Windows系统上安装MySQL。2. Hadoop安装:安装Hadoop需要满足特定的环境要求,包括配置JDK(本示例中使用JDK 1.8.0_11)。可以通过tarball文件进行安装,并将其解压到指定目录。3. MySQL安装:在Windows系统上完成MySQL的安装,并确保设置为远程可访问,以便Hive可以连接到MySQL数据库。4. Hive安装:下载并解压apache-hive-3.1.1-bin.tar.gz文件,将其安装到指定目录(例如/usr/local/soft/)。然后,配置系统环境变量,包括设置HIVE_HOME和PATH变量。5. 环境变量配置:添加HIVE_HOME、HADOOP_HOME和JAVA_HOME变量,并将它们加入PATH变量中。6. Hive配置文件修改:根据实际情况修改hive-config.sh文件,并将hive-default.xml.template文件复制为hive-site.xml并进行相应修改。7. Hive元数据库配置:配置Hive元数据库,使用MySQL作为后端数据库,确保在hive-site.xml中添加必要的数据库连接信息和凭据。8. 启动Hive:使用hive命令启动Hive服务,如“hive”或“hive --service metastore”,同时确保HDFS已启动以确保Hive的正常工作。知识点:Hive的安装需要依赖于Hadoop环境支持。
Hive
2
2024-07-19