Sinkhorn重心
当前话题为您枚举了最新的 Sinkhorn重心。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Sinkhorn-Knopp算法矩阵归一化实现(Matlab)
Sinkhorn-Knopp算法通过对矩阵A进行操作,找到对角矩阵D和E,使得经过归一化后的矩阵M = DAE,每一列和每一行的总和都为1。该方法通过交替归一化矩阵的行和列,实现矩阵归一化。这种算法高效且不需要对矩阵A进行转置或在每次迭代中执行完整的归一化。需要注意的是,A必须是非负矩阵。如果A中含有零,算法可能不会收敛,具体收敛性取决于零的分布。在实现时,可以设置最大迭代次数和容错值。这种归一化的矩阵被称为“双重随机矩阵”,即每一行和每一列的总和均为1。此类矩阵广泛应用于多个领域,例如网页排名。参考文献:Philip A. Knight (2008) "Sinkhorn–Knopp算法:收敛和应用",SIAM矩阵分析与应用杂志30(1), 261-275,DOI:10.1137/060659624。
Matlab
0
2024-11-06
去偏重心的随机森林图像Matlab代码
这份指南介绍了如何通过Matlab代码实现去偏的Sinkhorn重心的随机森林图像重现结果。所有实验都支持在CPU或GPU上运行。报告的结果包括定理图和收敛图(CPU:几秒钟,省略号:3分钟;GPU:15秒),以及在GPU上进行的OT重心嵌入(1小时)和随机森林CPU训练(5分钟)。所有图形保存在fig/文件夹中。具体依赖项包括matplotlib、scikit-learn、torch和pandas。另外,为了重现Ellipse实验,需要安装otbar文件夹中的支持重心代码和Matlab 2019b版本以及Python的Matlab引擎API。
Matlab
0
2024-10-01
基于动态重心平均核的RBF网络时间序列分类
DBAK-RBF: 基于动态重心平均核的RBF网络时间序列分类
该代码库提供了一种新的时间序列分类方法:动态重心平均核径向基函数网络 (DBAK-RBF),相关论文已被 IEEE Access 收录。
核心内容
动态重心平均核 (DBAK):
基于改进的高斯动态时间规整 (AGDTW) 算法。
利用 k 均值聚类和基于 DTW 的平均算法 (DTW 重心平均,DBA) 确定核中心。
引入归一化项以增强训练过程的稳定性。
DBAK-RBF 网络:
集成 DBAK 作为核函数。
有效处理时移不变性、复杂动力学和不同时间数据长度带来的挑战。
代码结构
DBAKRBF/:
包含 DBAK-RBF 网络及其组件分析的源代码。
基于 https://github.com/habi/dynamic-time-warping 进行开发。
DBAKRBF/costFunctionRBFN.m: 计算 DBAK-RBF 网络的成本和梯度。
Matlab
2
2024-05-30
MATLAB SimMechanics中机构动态仿真的重心坐标优化
在MATLAB SimMechanics中进行机构动态仿真时,优化重心坐标系CS1(Ground坐标)及其相关的CS1坐标系(Ground、铰坐标系)是至关重要的。
Matlab
1
2024-07-28
MATLAB中的高效Wasserstein重心离散分布聚类的新方法
在MATLAB中,WBC_Matlab为离散分布聚类提供了一种高效的Wasserstein重心计算方法,特别适用于具有稀疏支持的情况。
Matlab
0
2024-09-27