均值估计
当前话题为您枚举了最新的均值估计。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
多重均值比较
对四种颜色下的总体的均值进行多重比较,以确定它们之间是否存在显著差异。
统计分析
2
2024-05-01
均值偏移相关资料
基于均值偏移算法的MATLAB聚类程序
均值偏移基本原理、算法和应用
均值偏移图像分割程序
均值偏移目标跟踪MATLAB程序
基于均值偏移的图像分割MATLAB程序
均值偏移算法源代码和演示图片
均值偏移目标跟踪程序
小波变换MATLAB程序
均值偏移算法聚类程序
均值偏移算法详解和MATLAB源码
均值偏移算法跟踪代码及卡尔曼滤波处理
均值偏移算法聚类程序
均值偏移跟踪算法及C++源码
均值偏移跟踪算法MATLAB实现
均值偏移图像分割MATLAB源码
均值偏移卡尔曼目标跟踪编译程序
均值偏移图像平滑MATLAB实现
均值偏移目标跟踪MATLAB实现
均值偏移跟踪算法C++源代码
基于均值偏移算法的目标检测程序
均值偏移原理及图像分割应用MATLAB程序
基于卡尔曼滤波的均值偏移算法
基于均值偏移算法的图像分割MATLAB代码
均值偏移追踪程序
基于均值偏移算法的图像分割程序
算法与数据结构
5
2024-05-13
稳健估计度量
利用 MATLAB 实施测量程序,通过调整权重的大小实现稳健估计。
Matlab
4
2024-04-30
参数估计
正态分布参数估计命令:[muhat, sigmahat, muci, sigmaci] = normfit(X, alpha) (默认alpha为0.05)其中:- muhat:均值点估计- sigmahat:标准差点估计- muci:均值区间估计- sigmaci:标准差区间估计
统计分析
3
2024-05-19
顺序k均值算法实现
本项目通过分析不同背景舞者的动作模式,探寻舞蹈中肢体的语言,揭示舞者的动作特征。
该项目采用聚类技术(主要是k均值)分析动作模式,并使用k均值的变体——顺序k均值算法进行在线聚类,集成到实时交互式舞蹈表演组件中。
计算系统根据舞者的训练识别模式,形成反馈循环,促进舞者与机器的交流。该系统使用定制数据库,突出不同运动形式的差异,并重视运动选择过程。
Matlab
2
2024-05-26
K均值聚类算法
这份文档包含了用于图像分割的K均值聚类算法的Matlab程序代码。
算法与数据结构
2
2024-07-17
Matlab实现K均值与模糊C均值聚类及其可视化
使用Matlab对随机生成的数据进行聚类分析,分别采用K均值聚类和模糊C均值聚类方法。
K均值聚类:* 距离计算方法:默认采用欧式距离(sqeuclidean),可选用曼哈顿距离(cityblock)、余弦距离(cosine)、相关系数距离(correlation)以及汉明距离(hamming,仅适用于二分类变量)。* 可选参数:'Streams'和'UseSubstreams',用于设置数据流,需重新设置数据。* 输出结果:* 各变量的簇心位置;* 簇内点到质心距离之和;* 各点在不同距离计算方法下到质心的距离;* 基于不同距离计算方法的聚类结果;* silhouette系数用于评估聚类合理性。
模糊C均值聚类:* 输出结果:* 聚类结果;* 各变量的簇心位置。
结果可视化:* 聚类图* 识别图* 三维分布图* 树状图* 平铺图
统计分析
3
2024-05-23
深入k-均值聚类
这篇论文深入探讨了k-均值聚类算法,涵盖了其核心原理、算法步骤以及应用场景。此外,还分析了k-均值算法的优势和局限性,并讨论了如何优化算法性能,例如选择合适的k值和初始聚类中心点。
数据挖掘
4
2024-05-15
SQL求平均值语法
求平均值函数: AVG
语法:AVG([DISTINCT] 列名)
示例:* 计算工资平均值:SELECT AVG(SALARY) FROM EMPLOYEE_PAY_TBL* 计算唯一工资平均值:SELECT AVG(DISTINCT SALARY) FROM EMPLOYEE_PAY_TBL
SQLServer
2
2024-05-25
均值漂移聚类:TensorFlow实现
该代码实现了一个使用TensorFlow进行均值漂移聚类的算法。均值漂移聚类是一种基于核密度估计的无监督学习算法。高斯核用于计算数据点的密度,并且数据点根据其密度的梯度移动,直到达到稳定状态或达到最大迭代次数。该代码提供了聚类过程中对算法参数进行调整的选项。
Matlab
2
2024-06-01