HTJ2K

当前话题为您枚举了最新的 HTJ2K。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

K2HDKC:基于 K2Hash 的分布式键值存储集群
K2HDKC 是一个构建于 K2Hash 之上的分布式键值存储 (KVS) 集群系统。
k2p_bcm_v14.rar 分享
分享 k2p_bcm_v14.rar
Java语言K2HASH库的综合指南
关于K2HASH-Java库 K2HASH-Java库是由Yahoo! Japan开发的一款官方Java驱动程序,用于NoSQL键值存储(KVS)。 安装 要使用K2HASH-Java库,请在pom.xml中添加以下依赖项: xml ax.antpick k2hash 使用 要使用K2HASH-Java库,请执行以下步骤: 1. 克隆此存储库并进入目录。 2. 运行mvn clean exec:exec package命令。 许可证 K2HASH-Java库在MIT许可证下分发。
MATLAB代码的JPEG压缩实现-MatHTJ2K
MatHTJ2K是REC 2000中定义的JPEG 2000第1部分和第15部分的MATLAB实现。它描述了高吞吐量JPEG 2000(HTJ2K)的算法,帮助开发基于HTJ2K的图像压缩系统的人员。您可以使用MatHTJ2K进行图像压缩,生成符合JPEG 2000 Part 1或Part 15标准的码流,以及解压缩这些码流为图像。此外,MatHTJ2K支持.jp2和.jph文件的读写操作。使用前需确保您的MATLAB版本为2018b或更高,并已安装图像处理工具箱。
ManHaenORtest:2x2表k层Mantel-Haenszel优势比推断
该工具用于执行2x2表k层的优势比推断。它近似检验零假设,该假设表明每个层中的成功概率相等,或共同优势比为1。输入包含(a,b,c,d)的观测频率单元的X-data矩阵、t-期望检验(1:单尾;2:双尾)和alpha显着性水平(默认为0.05)。输出包括每个层的样本成功百分比以及包含Mantel-Haenszel统计量、层数和P值的表格。
NBA2K11 游戏数据获取及可视化工具
该工具可从 NBA2K11 游戏中获取数据,以便进行可视化分析。功能包括: 记录练习和比赛中的数据 启用上帝模式,让所有投篮都得分
K2HASH:高效能NoSQL键值存储解决方案
K2HASH:为NoSQL赋能 K2HASH 是一个功能强大的键值存储(KVS)库,专为NoSQL数据库设计。它提供高效、可靠的数据管理,助力构建高性能应用程序。 K2HASH 的优势: 高性能: K2HASH 采用先进的算法和数据结构,实现快速数据读写,满足高吞吐量应用需求。 可扩展性: 支持水平扩展,轻松应对数据量增长,确保系统稳定性。 灵活性: 提供多种数据类型和操作,适应不同应用场景。 持久性: 数据持久化存储,防止数据丢失,保障数据安全。 应用场景: 缓存系统 会话存储 实时数据处理 游戏数据存储 物联网数据管理 了解更多: K2HASH 官方网站 拥抱 NoSQL 的力量,选择 K2HASH,为您的应用注入高效数据管理能力。
Enhanced K-Means Clustering with L2Norm Regularization for Improved Feature Discrimination
K-means algorithm has long been a staple in machine learning and data mining fields, primarily for its effectiveness in clustering large-scale datasets. However, traditional K-means clustering doesn't inherently distinguish the varying discriminative power of features in data. To address this, the paper proposes an innovative clustering framework incorporating L2-norm regularization on feature weights, thereby enhancing clustering outcomes. This new approach builds on the Weighted K-means (W-K-means) algorithm by applying L2-norm regularization to feature weights, effectively balancing feature importance. For numerical datasets, this framework introduces the l2-Wkmeans algorithm, which uses conventional means as cluster centers. For categorical datasets, two variations—l2-NOF (Non-numeric features based on different smoothing modes) and l2-NDM (Non-numeric features based on distance metrics)—are proposed. The essence of these methods lies in their updated clustering objective function and derived update rules for cluster centers, membership matrices, and feature weights. Extensive experiments demonstrate the superior performance of the proposed algorithms on both numerical and categorical datasets. These methods exhibit advantages such as improved clustering accuracy, robustness to noisy data, and adaptability to high-dimensional data environments. This signifies that incorporating L2-norm regularization for feature weighting substantially enhances the clustering quality of K-means, especially for complex, high-dimensional datasets. Additionally, the study discusses the impact of regularization parameters on clustering performance, offering practical insights for tuning these parameters to optimize clustering results. This guidance allows users to select the appropriate regularization intensity based on task-specific and data-related characteristics. The research provides a fresh perspective on improving the K-means clustering algorithm by emphasizing feature importance through L2-norm regularization, enhancing both clustering power and generalizability. This method is valuable for large-scale datasets and scenarios that require nuanced feature differentiation, representing a significant step forward in clustering quality and advancing related research fields.
Energy Control Problem Code in MATLAB-GCNMF-s2k Group Constrained Non-negative Matrix Factorization with Sum-k Constraint for Load Disaggregation
Energy Control Problem Code in MATLAB: Non-Intrusive Load Monitoring (NILM) for HVAC Systems This repository contains the dataset we collected for HVAC energy disaggregation, as well as the source code and demonstrations from our paper in IEEE Transactions on Power Systems. To the best of our knowledge, this is the first dataset collected for studying Non-Intrusive Load Monitoring (NILM) applied to Heating, Ventilation, and Air Conditioning (HVAC) systems. Energy disaggregation or Non-Intrusive Load Monitoring (NILM) addresses the problem of extracting device-level energy consumption information by monitoring the aggregated signal at a single measurement point, without the need to install meters on each individual device. This can be framed as a source separation problem where the aggregated signal is represented as a linear combination of the basic vectors in a matrix factorization framework. In this work, we utilize machine learning to predict the energy consumption pattern of each device over the course of a day. The project is part of our collaboration with [institution name]. Prerequisites: MATLAB R2015a Datasets (Temporarily unavailable. Will be available once the required permissions are granted. Apologies for the inconvenience!) Experiments We designed two different experiments to evaluate our proposed algorithm. The first experiment disaggregates the energy of the entire household into the energy consumption of all devices within the home.
SQL SERVER 2K5 日志传送助力数据库灾备
SQL SERVER 2K5 日志传送功能为数据库提供了灾难恢复解决方案,是实现 SQL SERVER 高可用性的重要组成部分。