股市趋势
当前话题为您枚举了最新的 股市趋势。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
基于Matlab的小波分析在股市趋势预测中的应用
随着技术的不断进步,基于Matlab的小波分析在预测股市趋势方面展现出了其独特的应用价值。
Matlab
0
2024-09-19
股市数据AKDaily优化
股市数据在AKDaily平台的详细分析和报道。
Oracle
0
2024-08-29
温顿股市挑战数据集
温顿资本,一家寻求挖掘隐藏信号的数据科学家的公司,发起了一项挑战:预测股票收益。这项比赛要求参赛者利用股票的历史表现和隐藏特征来预测当日和当日收益,而不会被噪音干扰。温顿的研究科学家们精心策划了这场比赛,为社区带来了挑战,并让他们了解了温顿日常处理的各种问题。他们期待着与Kagglers互动,并从他们独特的背景和创新方法中学习。虽然比赛提供现金奖励,但其主要目标不是商业性的。参赛者保留他们创建的知识产权,其适用性将被评估。
数据挖掘
2
2024-05-19
股市预测算法比较及其应用探索
股市预测是一种预测股票未来价格的方法,随着技术的进步,包括机器学习在内的各种算法正在成为研究和投资者关注的焦点。本项目探索了多种数据挖掘算法如线性回归、Arima、LSTM、随机森林和支持向量回归在NSE股票市场的应用。通过比较预测精度,评估了不同模型的效果,并应用了预处理方法提高了预测准确度。数据集来源包括印度股票市场,涵盖了多元化的行业特征。
数据挖掘
2
2024-07-17
旅游消费趋势
近年来,旅游消费频次和规模持续增长。自2005年至2016年,旅游消费频次增长近两倍,单次消费金额翻了一番,旅游已发展成为重要的消费活动。
算法与数据结构
3
2024-05-27
股市预测的融合模型HMM、ANN与GA结合分析
介绍了一种新型股市预测模型,该模型综合了隐马尔可夫模型(HMM)、人工神经网络(ANN)和遗传算法(GA)。文章详细阐述了这些算法在股市预测中的应用背景、原理及其组合优势。隐马尔可夫模型通过模拟市场状态的隐含变化来预测市场走势;人工神经网络则利用其非线性映射和自适应学习能力分析复杂的经济指标和金融数据;而遗传算法通过全局搜索优化模型参数,提升预测准确性。该混合模型结合了三者的优势,是当前股市预测领域的一大创新。
算法与数据结构
0
2024-09-14
旅游大数据发展趋势
手工化处理(2004前)
旅游与互联网融合,多元参与(2005-2009)
电商平台介入,景区智慧化(2010-2014)
互联网+旅游,数字旅游(2015至今)
算法与数据结构
10
2024-05-13
浦东新区气温变化趋势
浦东新区气温变化趋势
该可视化图表直观展示了浦东新区一段时间内的气温变化情况,可以帮助用户快速了解气温走势。
统计分析
2
2024-05-25
资源下载的最新趋势
在当前信息时代,资源下载方式正在经历深刻变革。随着技术的不断进步,传统资源获取方式正被数字化和网络化所取代。
Access
0
2024-08-09
MK趋势检验MATLAB代码解析
MK趋势检验MATLAB代码详解####一、MK趋势检验简介Mann-Kendall (MK)检验是一种非参数统计检验方法,用于检测时间序列数据中的趋势变化。它不仅可以判断时间序列是否存在单调上升或下降的趋势,还可以确定趋势变化的显著性。在环境科学、水文学、气象学等多个领域有着广泛的应用。 ####二、MATLAB代码详解##### 1.数据准备我们需要从Excel文件中读取数据。在这个例子中,数据存储在一个名为A的变量中,并将其分为两个向量x和y,分别代表时间序列的时间戳和观测值。 matlab A = b;t%假设b是从Excel文件读取的数据x = A(:,1); %第一列为时间戳y = A(:,2); %第二列为观测值 ##### 2.计算统计量接下来,我们计算MK检验所需的统计量。 - N:观测值的数量。 - Sk:前k个数据点的累积和。 - UFk:正向统计量。 - UBk:反向统计量。 matlab N = length(y); n = N; Sk = zeros(N, 1); UFk = zeros(N, 1); s = 0; for i = 2:n for j = 1:i if y(i) > y(j) s = s + 1; end; Sk(i) = s; E = i * (i - 1) / 4; Var = i * (i - 1) * (2*i + 5) / 72; UFk(i) = (Sk(i) - E) / sqrt(Var); end;这里,Sk表示前k个数据点中后一个数据点大于前面所有数据点的数量之和。UFk是标准化后的累积差值,用于正向趋势检测。对于反向趋势检测,我们还需要计算UBk: ```matlab y2 = zeros(N, 1); Sk2 = zeros(N, 1); UBk = zeros(N, 1); s = 0; for i = 1:n y2(i) = y(n - i + 1); end; for i = 2:n for j = 1:i if y2(i) > y2(j) s = s + 1; end; Sk2(i) = s; E = i * (i - 1) / 4; Var = i * (i - 1) * (2*i + 5) /
算法与数据结构
0
2024-08-18