Java实现
当前话题为您枚举了最新的Java实现。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。
Apriori算法Java实现
Apriori 算法的 Java 代码实现,结构清晰,逻辑也蛮顺的,适合拿来学习关联规则挖掘的基本流程。ArrayList+HashMap组合拳搞定事务存储和频繁项集,嗯,挺经典的做法。事务数据库的读取用的是一个readTable方法,从 TXT 里按行读,每行按空格分,操作也不复杂。整个流程是:先拿最小项集(单个元素)开始,算支持度,剪一剪,符合的就进频繁项集,继续组合更大的项集,直到挖不出新货为止。剪枝部分用的pruning方法,也挺直接,就是看哪个候选集支持度低就干掉哪个。支持度和置信度两个参数是关键,你可以手动设,比如min_support = 0.2这种。规则生成用的是强关联规则逻辑
数据挖掘
0
2025-06-14
Apriori算法Java实现
Apriori 算法的 Java 实现,蛮适合想亲手撸一遍关联规则挖掘流程的朋友。全程不用第三方库,只靠标准 JDK 8,逻辑清晰,结构工整,尤其适合做算法原理的理解练习。候选集生成用的是Fk-1 × F1和Fk-1 × Fk-1这两种方式,规则生成也优化过,把原来ap-genRules里没覆盖的规则也补上了。嗯,比较贴合真实需求。
数据挖掘
0
2025-07-01
Java实现TensorFlow张量乘法
Java 写 TensorFlow 张量相乘的代码,结构清晰,调用方式也比较直观。用Tensor对象搞定矩阵乘法,思路跟 NumPy 有点像,但又不失 Java 的稳。适合想在 Java 项目里跑点深度学习的你,轻松集成,不用折腾太多原生 API。
算法与数据结构
0
2025-06-29
Java实现Aproiori算法详解
Aproiori算法是数据挖掘中经典的方法,用于发现数据库中的频繁项集和关联规则。由R. Agrawal和R. Srikant在1994年提出,它通过迭代寻找满足最小支持度阈值的项集。在Java实现中,我们首先生成项集,计算单个项的支持度,并利用Apriori性质生成闭合频繁项集。关键在于设计合适的数据结构和有效的剪枝策略,如使用Map存储项集和支持度,以及候选集的处理。Java代码可以从单元素频繁项集开始逐步生成更大的频繁项集,确保算法的高效性和可扩展性。
数据挖掘
8
2024-07-17
算法入门Java实现详解
《算法第四版谢路云翻译》是一本深入浅出的算法入门书籍,以Java语言为实现基础,内容精炼易懂,非常适合初学者。
算法与数据结构
14
2024-09-14
Adaptive Radix Tree Java实现
Java 实现的 ART 树,挺适合搞存储结构优化的你看看。路径压缩和懒扩展这两个点实现得比较地道,插入、查找、删除这些常规操作都能搞定,甚至还能查前缀,适合做那种键值前缀匹配的场景。源码结构清晰,不绕,直接能拿来用或者做二次开发。如果你对数据库索引结构感兴趣,ART 确实是个不错的切入点,性能和灵活性都还蛮均衡的。
算法与数据结构
0
2025-06-14
Java栈与队列实现
Java 的栈和队列实现,挺适合刚接触数据结构的朋友练手用的。逻辑不复杂,代码也清晰,重点是能把基本操作搞明白。你要是还在头疼入门怎么下手,不妨看看这个实现思路,蛮实用的。
算法与数据结构
0
2025-06-29
DBSCAN聚类算法Java实现
利用DBSCAN聚类算法实现的核心思想是:遍历所有未访问点,若为核心点则建立新簇,并遍历其邻域所有点(点集A),扩展簇。若簇内点为核心点,则将其邻域所有点加入点集A,并从点集移除已访问点。持续此过程,直至所有点被访问。
算法与数据结构
24
2024-04-30
KNN Java实现分类算法
KNN 算法的 Java 实现,写起来其实挺直观的,逻辑也不复杂,适合刚上手机器学习的同学练手。你只要搞清楚怎么量距离、怎么选最近的 K 个,投票分类就行。用 Java 来实现也蛮方便的,数据结构清晰,扩展性也不错。
距离计算的方式可以选常见的,比如欧氏距离、曼哈顿距离,你可以封装成一个DistanceCalculator类,方便后期扩展。预测的时候,把每个样本和待预测的样本一一对比,存一下距离,排序,挑前 K 个出来。
类设计也别太复杂,一个Sample类搞定特征和标签,再加一个KNN类负责训练和预测。预测的时候调用predict(),传入新样本,它会自动返回分类结果,蛮好用的。
如果你数据
数据挖掘
0
2025-06-22
Java实现多元线性回归示例
介绍了如何利用Java实现多元线性回归分析,通过对随机变量y和自变量x0、x1等的多组观测值进行分析,附带详细注释。
算法与数据结构
11
2024-08-13