MATLAB数字识别

当前话题为您枚举了最新的MATLAB数字识别。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Matlab 语音数字识别代码
这段 Matlab 代码实现了语音数字识别功能,通过分析用户语音,训练计算机识别用户所说的数字。 代码包含四个脚本: 两个脚本用于创建训练集 一个脚本用于创建输入语音文件 两个脚本用于训练模型,并将训练后的模型保存在 Model.mat 文件中 最终代码接收语音输入,识别用户所说的数字,以测试识别系统。该代码在 MATLAB 平台上运行速度快,可应用于语音转文本、语音密码等项目。
手写数字识别使用MATLAB实现
使用机器学习方法实现的手写数字识别MATLAB源代码。
语音识别数字辨识-MATLAB开发
0至9的数字辨识是语音识别技术中的重要应用之一。MATLAB开发平台提供了有效的工具和算法,用于实现这一技术。
FCN MATLAB代码训练数字识别2.0
使用FCN进行数字识别训练的方法如下:从Git克隆代码至CAFFE_ROOT/examples/;获取并移动fcn-32s-pascalcontext.caffemodel至CAFFE_ROOT/models/fcn-32s-pascalcontext.caffemodel;下载数据至CAFFE_ROOT/data/后,运行CAFFE_ROOT/examples/digits2.0/convert.py将数据转为lmdb;通过solve.py启动训练。测试方法:下载预训练模型或自行训练,然后运行CAFFE_ROOT/examples/digits2.0/test_fcn11_full.m(需要Matlab和matcaffe支持);代码基于贡献者的工作。
模式识别课程实验手写数字和口语数字识别
在NTUA(2016-2017)模式识别课程第9学期的实验中,我们进行了两项实验:一是手写数字0-9的视觉识别,采用了深度神经网络,达到了约99.8%的识别率;二是基于语音数据的口语数字识别,在Matlab中使用HMM工具进行了模型评估,显示出了良好的准确性。
Matlab实现手写数字图像识别
该项目使用Matlab实现了卷积神经网络(CNN)类的手写数字识别。Yann LeCun设计的CNN已广泛应用于手写数字识别、人脸检测和机器人导航等实际应用中。由于卷积网络的特性,该项目通过Matlab独立实现,不依赖神经网络工具箱的源代码修改。项目提供了预训练的CNN模型,并具备简单的GUI界面,可加载模型进行数字识别。
Matlab中表盘数字指针的识别技术探讨
Matlab中的表盘数字指针识别技术是一项复杂的任务,涉及到霍夫曼算法、GUI界面设计、指针追踪及多处理过程图等关键技术。将深入探讨这些技术在实际应用中的应用和优化策略。
MATLAB实现手写数字的高效识别方法
利用MATLAB实现了手写数字的快速识别算法,该算法具有典型特征,适合作为课程设计的参考资料。
基于CNN的数字识别MATLAB实现与简要论文
本项目提供LeCUN早期CNN代码的MATLAB改编版本,用于MNIST手写数字识别。代码实现基于卷积神经网络,并附带一份阐述思路的论文,希望能为相关研究提供参考。
基于MATLAB的BP算法手写数字识别系统
首先打开GUI,与其他方法相比,我设计的图形用户界面更加直观易用。