实时大数据处理

当前话题为您枚举了最新的实时大数据处理。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

Flink 1.10.2实时大数据处理的利器
Apache Flink是一个流处理框架,以其高效、低延迟的实时数据处理能力在大数据领域广受欢迎。flink-1.10.2-bin-scala_2.12.tgz是针对Scala 2.12版本的Flink 1.10.2二进制发行版压缩包,包含了所有运行Flink所需的核心组件和工具。Flink支持流处理模型,通过DataStream API定义数据处理逻辑,并且能够无缝地处理批处理和流处理任务。它提供强大的状态管理机制,支持事件时间处理和多种连接器,如Kafka、HDFS等。Flink还引入了SQL支持,使得使用SQL查询数据流更加方便。
Storm是Twitter开源的实时大数据处理框架
Storm是由Twitter开源的分布式实时大数据处理框架,被业界誉为实时版Hadoop。
高效实时大数据处理模型的接收与处理分离方案
在大数据处理过程中,系统需要确保高效率的数据处理能力。为了满足实时、高效、稳定处理大数据的需求,提出了一种接收与处理分离的数据处理模型。该模型包括数据接收单元、内存数据库、原始数据分发单元、数据处理单元、处理数据分发单元和数据归并单元。数据接收单元负责整合结构化和非结构化数据,并将完整数据存入内存数据库。分发单元通过负载均衡算法从内存数据库中检索数据,分发至数据处理单元;数据处理单元处理数据并将处理结果存回内存数据库;处理数据分发单元继续从内存数据库中提取处理后的数据,再次通过负载均衡算法分发至数据归并单元。
大数据处理实战
掌握Hadoop和Spark技巧,轻松处理大数据!
Spark Streaming实时数据处理详解
Spark Streaming是Spark核心API之一,专注于支持高吞吐量和容错的实时流数据处理。随着数据技术的不断演进,它在实时数据处理领域展现出强大的能力和应用潜力。
Storm实时数据处理技术详解
本书详细介绍了基于Storm的开发环境搭建和实时系统测试的实用方法及实战案例,以及应用最佳实践将系统部署至云端的方法。你将学习到如何构建包含统计面板和可视化功能的实时日志处理系统。通过集成Storm、Cassandra、Cascading和Hadoop,了解如何建立实时大数据解决方案用于文字挖掘。书中涵盖了利用不同编程语言在Storm集群中实现特定功能,并最终将解决方案部署至云端的方法。每一步都应用了成熟的开发和操作实践,确保产品交付的可靠性。
Spark大数据处理技术
本书由夏俊鸾、黄洁、程浩等专家学者共同编写,深入浅出地讲解了Spark大数据处理技术。作为一本经典的入门教材,本书内容全面,涵盖了Spark生态系统的核心概念、架构原理以及实际应用案例,为读者学习和掌握大数据处理技术提供了系统化的指导。
Spark:大数据处理利器
Spark:大数据处理的瑞士军刀 Spark,源自加州大学伯克利分校AMP实验室,是一个通用的开源分布式计算框架。它以其多功能性著称,支持多种计算范式,包括: 内存计算:Spark利用内存进行计算,显著提高了迭代算法和交互式数据分析的速度。 多迭代批量处理:Spark擅长处理需要多次迭代的批量数据,例如机器学习算法。 即席查询:Spark可以对大规模数据集进行快速查询,满足实时数据分析的需求。 流处理:Spark Streaming 能够处理实时数据流,并进行实时分析。 图计算:GraphX 是 Spark 的图计算库,用于处理大规模图数据。 Spark凭借其强大的性能和灵活性,赢得了众多企业的青睐,如阿里巴巴、百度、网易、英特尔等。 《Spark快速数据处理》将带您深入学习Spark,内容涵盖: Spark安装与集群配置 Spark作业的运行方式(交互模式和脱机模式) SparkContext的连接与使用 RDD(弹性分布式数据集)的创建与保存 Spark分布式数据处理 Shark与Hive的集成 Spark作业的测试与性能优化 通过学习本书,您将掌握使用Spark进行高效数据处理的技能,应对大数据时代的挑战。
Spark大数据处理技术
一本介绍Spark大数据处理技术的电子书。
实时数据处理工具——Storm高效处理实时数据流
Storm,作为一种实时流处理框架,自2016年以来一直在业界广泛应用。其高效处理实时数据流的能力,使其成为许多大型数据处理系统的首选工具之一。