竞争情报

当前话题为您枚举了最新的竞争情报。在这里,您可以轻松访问广泛的教程、示例代码和实用工具,帮助您有效地学习和应用这些核心编程技术。查看页面下方的资源列表,快速下载您需要的资料。我们的资源覆盖从基础到高级的各种主题,无论您是初学者还是有经验的开发者,都能找到有价值的信息。

企业财务竞争情报的网络数据挖掘技术应用
企业竞争和发展中,财务竞争情报至关重要,企业应重视竞争对手财务情报的收集与利用。在信息技术广泛应用的今天,企业可通过网络、数据库和数据挖掘技术获取财务情报,建立自己的竞争情报体系。这些技术不仅帮助企业积极获取和分析竞争对手的财务数据,还为战略决策提供了宝贵信息,助力企业在竞争中占据主动地位和获得竞争优势。
开源情报方法与工具
《开源情报方法与工具》专注于深入理解如何利用开源情报(OSINT)技术、方法和工具,从公开可获取的在线来源获取信息,支持情报分析。这些获取的数据可以用于不同的场景,如金融、犯罪和恐怖主义调查,以及更常规的任务,如分析商业竞争对手、进行背景调查和获取个人及其他实体的情报。本书还将提升您从表层网、深层网和暗网在线获取信息的技能。许多估计显示,情报服务获取的有用信息中,90%来自公开来源(即OSINT来源)。社交媒体网站因其集中了大量有用信息而成为调查的良好资源。例如,您可以从一个地方获取大量个人信息。
角色情报专家,创意社群互动活动
参与者可以通过制作个性化身份卡成为“神秘人”,或者作为“解密人”根据线索揭示神秘人身份。成功解密后,“解密人”将获得神秘人的联系方式。
解决oracle库缓存闩竞争的方法
确定系统运行缓慢的原因:从v$session_wait视图中选择等待事件不是'client message'且不包含'%NET%'的会话,等待时间为0且会话ID大于5。
Kohnen竞争学习神经网络MATLAB开发
执行M文件,这是Kohnen竞争学习神经网络的学习算法。
大数据环境下情报学的新挑战与机遇
随着技术进步,大数据在情报学领域的应用正在改变传统方法。面对复杂的数据网络和多样化的分析方法,情报学面临着精准化需求和结果呈现的挑战。探讨了大数据在知识领域中的发展现状,分析了情报学在大数据环境下的机遇与挑战,提出了情报学变革的新框架,包括信息资源构成、组织方式、分析方法和服务功能的拓展。
国际情报学领域核心期刊与研究热点的视觉分析
文章利用可视化工具对检索的数据进行分析,展示了国际情报学领域的核心期刊分布情况。同时,通过词频统计揭示了情报学领域的研究热点,为选择研究重点提供了详细参考。
基于竞争学习的HMMs聚类方法研究论文
针对当前主流数据库审计系统存在的审计信息冗余、不灵活的审计配置方式以及数据统计分析能力不足等问题,我们提出了一种创新的数据库安全审计系统。该系统可以有效约简审计信息,支持灵活的审计配置,并能够有效检测潜在的数据库攻击,为数据库安全防护提供实用的解决方案。
Matlab代码人口增长模型中的竞争干扰
这是与通过垫料生产产生的竞争干扰理论相关的人口增长模型Matlab代码存储库。提供的代码包括:1. 用于连续时间模型及其变体分析、模拟和结果展示的工具;2. 用于离散时间年度-多年生模型及其变体分析、模拟和结果展示的代码;3. 用于准确重现图形的颜色映射。
价值驱动型商业分析:打造可持续竞争优势
当今企业战略核心聚焦于客户和股东价值。然而,分析技术往往过度关注复杂的技术和统计数据,而忽视了长期价值创造。Verbeke、Bravo 和 Baesens 合著的《Profit-Driven Business Analytics》一书恰逢其时地提出了一种亟需的转变:将分析技术发展为成熟的、增值的工具。该书建立在作者团队丰富的研究和行业经验之上,对于任何希望利用分析技术创造价值并获得可持续战略优势的人来说都是必读之作。尤其在当今这个可持续价值创造的新时代,追求长期价值必须由可持续发展的强大组织来推动。随着公民参与和社会贡献逐渐成为关键的战略支柱,企业雇主的角色也在不断演变。