这份资料是计算机系研究生学习数据挖掘的经典教材,为PDF电子版。
计算机系研究生数据挖掘必修教材
相关推荐
数据挖掘: 研究生课程教材
这本数据挖掘教材专为研究生课程设计,能够帮助学生深入理解数据挖掘的核心概念、算法和应用。
它也为数据挖掘项目实践提供了宝贵参考,涵盖了项目实施过程中的常见问题和解决方案。
数据挖掘
3
2024-05-23
SDJU计算机系课程资料汇总
收录了SDJU计算机系CS和SE专业的课程资料,包括选课攻略、课件、实验报告、考试重点和复习资料等。
数据挖掘
3
2024-05-23
竞赛计算机系统
这是一个简单而实用的计算机竞赛开发环境,适合初学者使用,基于Microsoft Visual 2005和SQL 2000开发。
SQLServer
3
2024-07-27
数据挖掘在读研究生建议
首先,快速了解常用技术(分类、聚类等)。其次,选择一个课题。在研究过程中,深入了解所选技术的算法和应用。此外,关注数据挖掘的交叉学科性质,结合统计学、机器学习等知识。最后,注意及时与导师沟通,及时调整研究方向。
数据挖掘
5
2024-04-30
数据挖掘技术(研究生课程)
第一章数据挖掘基本知识.pdf
第二章数据预处理.pdf
第三章定性归纳.pdf
第四章分类与预测.pdf
第五章关联挖掘.pdf
第六章聚类分析.pdf
第七章复杂数据的挖掘.pdf
附:数据挖掘读书笔记(一二三四章).doc
数据挖掘
2
2024-07-12
研究生计算机专业方向-时间序列数据挖掘详细解析
时间序列数据挖掘是计算机科学中一项关键领域,尤其对研究生阶段的学术学习具有重要意义。它涵盖了统计分析、机器学习和数据库技术,从连续的时间序列数据中提取有价值的信息和模式。时间序列数据按时间顺序排列,例如股票价格、气象数据和传感器读数等。分析时序数据主要包括趋势分析、季节性分析、周期性分析、波动与异常检测、以及各种预测模型如自回归、移动平均模型和ARIMA。现代工具如R语言的forecast包和Python的pandas和statsmodels库支持数据处理、建模和可视化。
数据挖掘
0
2024-08-03
数据挖掘研究生课程注意事项
在数据挖掘研究生课程中,学生将学习如何从大量数据中提取有价值的信息和知识。数据挖掘是一个跨学科的技术,融合了统计学、机器学习、数据库系统和计算机科学等多个领域的理论与方法。课程使学生掌握数据挖掘的基本概念、技术及其实际应用,解决实际问题。数据预处理尤为重要,包括数据清洗、转换、集成和规约等步骤,以确保后续分析的有效性和准确性。分类方法如决策树、随机森林、支持向量机等用于预测模型构建;聚类方法如K-means、DBSCAN用于发现数据集中的自然群体;关联规则学习如Apriori和FP-Growth则用于发现项之间的频繁模式。此外,还涉及到序列模式挖掘、时间序列分析、网络分析等技术。学生将使用工具如R语言、Python和开源工具如Weka、Scikit-learn进行数据挖掘,提升实际操作能力。特征选择和模型评估是课程的重点,有助于提高模型效率和性能评估。同时,课程也关注隐私保护和伦理问题,强调在数据分析中遵循法规和尊重个人隐私。项目实践是课程的核心环节,通过实际案例培养学生解决问题的能力。
数据挖掘
0
2024-08-11
计算机科学经典教材下载
包括:1.《计算机体系结构:量化方法》第六版 2.《计算机网络:自顶向下方法》第八版 3.《计算机系统:程序员的视角》第三版 4.《计算机视觉:算法与应用》 5.《算法导论》第三版 6.《算法导论》第四版 7.《托马斯微积分:早期超越》第十四版 8.《托马斯微积分:国际单位制版》第十四版 9.《托马斯微积分》第十四版 10.《托马斯微积分》第十一版。购买即享超值资源下载!
算法与数据结构
2
2024-07-24
基于常用算法的计算机数据挖掘研究
本研究探讨了几种常见数据挖掘算法,并深入比较了它们的性能和适用场景。研究内容涵盖算法原理、实现方法以及在实际数据集上的应用。通过实验结果分析,揭示了不同算法在效率、准确率等方面的优劣,为数据挖掘技术的实际应用提供参考。
数据挖掘
5
2024-05-12