结合数据挖掘和蜜罐技术,提出了一种新型入侵检测系统。该系统融合了入侵检测和蜜罐的优势,采用数据挖掘技术分析攻击数据,提高了蜜罐的资源保护能力和入侵检测系统的防护能力。
数据挖掘与蜜罐融合入侵检测系统
相关推荐
基于数据挖掘的入侵检测系统
数据挖掘技术与关联规则算法结合,构建入侵检测系统模型。模型通过分析历史入侵数据,提取关联规则,实现入侵事件的检测与预测,提升入侵检测的效率与准确性。
数据挖掘
5
2024-05-26
入侵检测中的数据挖掘流程
入侵检测中的数据挖掘流程
数据挖掘在入侵检测技术中扮演着至关重要的角色,它能够帮助我们从海量数据中提取有价值的信息,识别潜在的入侵行为。
一个典型的数据挖掘流程包括以下几个关键步骤:
数据准备: 收集和整理用于入侵检测的原始数据,例如网络流量日志、系统日志、应用程序日志等。
数据清理和集成: 对原始数据进行清洗,去除噪声和冗余信息,并将来自不同来源的数据整合到一起。
数据挖掘: 应用各种数据挖掘算法和技术,从数据中提取有意义的模式和规律,例如异常检测、关联规则挖掘、分类和预测等。
知识表示: 将挖掘出的模式和规律以可理解的方式呈现出来,例如规则、树状结构、图表等,以便安全分析人员理解和利用。
模式评估: 对挖掘出的模式进行评估,验证其准确性和有效性,并根据评估结果对模型进行调整和优化。
数据挖掘
2
2024-05-21
Snort 入侵检测系统规则泛化模型
摘要:提出一种改进 Snort 入侵检测系统的规则泛化模型,通过聚类和最近邻泛化等方法增强检测能力,提高了入侵行为检测率,实现了新入侵行为的识别。
数据挖掘
4
2024-05-20
异常入侵检测技术探究
异常入侵检测技术探究
异常入侵检测,作为网络与信息安全领域的至关重要一环,其主要方法包括:
统计异常检测: 通过建立系统正常行为的统计模型,识别偏离模型的异常行为。
基于特征选择的异常检测: 提取网络流量或系统行为的关键特征,利用特征差异识别异常。
基于贝叶斯推理的异常检测: 利用贝叶斯定理计算事件发生的概率,判断异常出现的可能性。
基于贝叶斯网络的异常检测: 构建网络结构表达变量之间的依赖关系,通过概率推理进行异常检测。
基于模式预测的异常检测: 学习正常行为模式,预测未来行为,将与预测不符的行为判定为异常。
基于神经网络的异常检测: 利用神经网络强大的自学习能力,构建模型识别复杂非线性关系,从而检测异常。
基于贝叶斯聚类的异常检测: 根据数据间的相似性进行聚类,将孤立点或不属于任何簇的数据视为异常。
基于机器学习的异常检测: 利用机器学习算法训练模型,识别异常模式。
基于数据挖掘的异常检测: 从海量数据中挖掘潜在的异常模式,提升检测效率和准确性。
数据挖掘
6
2024-05-23
多核平台入侵检测系统负载均衡算法研究
负载均衡是多核平台实现高速入侵检测系统的重要技术之一。通过对真实流量的统计分析,发现流阈值与流数目、流字节数之间的变化规律,提出了只调整较大流的动态分流算法HCLF,并完成了原型系统的实现。实验结果表明,与静态哈希算法和新流调整算法相比,HCLF算法在负载均衡度和系统丢包率方面表现出显著的优越性,提高了多核平台高速入侵检测系统对突发流量和应用环境的适应能力。
统计分析
1
2024-07-12
数据挖掘技术在入侵检测中的应用(KDD Cup 1999数据)
使用各种数据挖掘技术进行入侵检测的数据集KDD Cup 1999位于技术前沿。K均值(K = 59)实现了93.077%的准确率和综合F1分数,支持攻击识别率高达0.95,正常识别率达到0.96。决策树表现出92.956%的准确率,全面F1分数为0.95,攻击识别率达到1.0,正常识别率为0.91。这些结果显示出数据挖掘技术在入侵检测中的显著优势。
数据挖掘
0
2024-08-29
数据分析协同-(网络与信息安全-入侵检测技术)
数据分析协同入侵检测不仅需要利用模式匹配和异常检测技术来分析某个检测引擎所采集的数据,以发现一些简单的入侵行为,还需要在此基础上利用数据挖掘技术,分析多个检测引擎提交的审计数据以发现更为复杂的入侵行为。在综合使用多个检测技术的基础上,可以发现各种常见的、典型的攻击行为。
数据挖掘
2
2024-07-15
基于MATLAB SVM与色彩融合的害虫检测系统优化版
该设计已成功调试,适用于学习与应用拓展。欢迎下载并参与答疑交流,共同提升。设计具有高学习价值,技术熟练者可根据需求调整算法功能。
Matlab
2
2024-07-31
网络与信息安全入侵检测技术的统计分析
在网络与信息安全领域,统计分析方法首先创建系统对象的统计描述,包括用户、文件、目录和设备等的测量属性,如访问次数、操作失败次数和延时等。这些属性的平均值用于与系统正常行为进行比较,当观察值超出正常范围时,可能发生入侵。
统计分析
3
2024-07-16