随着电力信息化的发展,电力数据的积累速度越来越快,如何使大数据产生价值、为公司科学发展提供支持的议题被越来越多地提及。内蒙古电力公司从2011年开始建设一体化平台数据中心,当前已经完成了公司各业务口的数据集成工作,为数据利用提供了基础。依据建设的一体化生产经营决策分析系统建设情况,从应用需求、应用技术、数据分析挖掘3个方面介绍了内蒙古电力公司在大数据背景下的数据仓库应用的探索与尝试。总结了建设成果与建设经验,得出做好分析展现应用的关键是需求管理,核心技术是数据挖掘的结论。
Inner Mongolia Electric Power Data Warehouse Applications
相关推荐
Data Warehouse Fundamentals Explained
Data Warehouse Fundamentals
1. Overview and Concepts
Data Warehouse is a database system designed for storing historical data to support business decision-making. It collects data from various source systems and integrates it into a unified format through processes such as Extract, Transform, Load (ETL). This section delves into the fundamental concepts of data warehouses and their applications in modern enterprises.
2. Importance of Data Warehousing
Increased Demand for Strategic Information: With intensified market competition, companies increasingly rely on data analysis for strategic decisions. Data warehouses provide high-quality historical data to achieve this goal.
Information Crisis: Traditional transaction processing systems struggle to meet growing data analysis demands, especially with large historical datasets. Data warehouses address these issues, ensuring data consistency and accuracy.
Technological Trends: With the advancement of big data technologies and cloud computing, data warehouses are evolving to adapt to new technological environments. These improvements enhance data processing speed and efficiency while reducing costs.
3. Technical Foundations of Data Warehousing
ETL Process: The critical data processing steps in a data warehouse, including Extract, Transform, and Load. Extracting involves acquiring data from multiple sources; transforming includes data cleaning, validation, and normalization; and loading refers to importing the transformed data into the warehouse.
Data Cleaning: An essential aspect of data preprocessing aimed at improving data quality by identifying and correcting erroneous values, removing duplicates, and filling in missing values.
4. Design and Architecture of Data Warehousing
Star Schema: A common design pattern featuring one fact table and multiple dimension tables. This model is simple and easy to understand and query.
Snowflake Schema: An extension of the star schema, where dimension tables are further normalized into sub-dimension tables, creating a more complex hierarchy but offering richer analytical possibilities.
Multidimensional Model: Another prevalent data warehouse model that organizes data through various dimensions, each with its own hierarchy.
5. Application Scenarios of Data Warehousing
Business Intelligence Reporting: Data warehouses provide critical business insights for senior management to formulate better strategies.
Market Analysis: In-depth analysis of historical sales data helps businesses understand market demands and consumer behavior better.
Customer Relationship Management: Data warehouses assist in tracking customer purchase history and service interactions, improving customer service and support.
6. Relationship Between Data Warehousing and Data Mining
数据挖掘
0
2024-10-31
Hybrid Genetic Algorithm Core Framework for Data Mining and SPSS-Clementine Applications
混合遗传算法(Hybrid Genetic Algorithm)是提高遗传算法运行效率和求解质量的一个有效手段。该算法在保持通用性的基础上,显著提升了其效率。基本框架如下所示:
数据挖掘
0
2024-10-31
详解Oracle Warehouse Builder(OWB)
Oracle Warehouse Builder(OWB)是专为Oracle数据库设计的完整解决方案,涵盖数据集成、数据仓库、数据质量分析和元数据管理。
Oracle
0
2024-08-10
POWER CENTER资料
提供 Informatica PowerCenter ETL 学习所需资料。
Hadoop
2
2024-05-15
Oracle Warehouse Builder使用指南
Oracle Warehouse Builder使用指南。
Oracle
0
2024-09-30
Power Designer 16.1.0.3637 破解
Power Designer 16.1.0.3637 最新破解版,稳定性较 16.0 版本大幅提升。
Sybase
3
2024-05-13
Oracle Warehouse Builder 11g概述
Oracle Warehouse Builder 11g是一款强大的数据仓库设计和管理工具,提供了广泛的功能来帮助用户有效地管理数据仓库。它能够集成多种数据源,进行数据清洗、转换和加载,从而支持企业数据管理的全面需求。
Oracle
0
2024-08-25
Sybase Power Designer 入门指南
功能强大的数据库设计工具,帮助您创建和管理数据库。
Sybase
3
2024-05-12
Power Designer使用指南
这是一本非常适合Power Designer初学者的好书,涵盖了多种数据模型的内容,帮助读者快速掌握Power Designer的基本操作和高级功能。
Sybase
2
2024-07-12