Home
首页
大数据
数据库
Search
Search
Toggle menu
首页
大数据
数据挖掘
正文
改进Apriori算法在乳腺疾病数据挖掘中的应用
数据挖掘
11
PDF
345.56KB
2024-05-14
#Apriori算法
# 数据挖掘
# 医疗数据
# 乳腺疾病
# 算法改进
改进Apriori算法在乳腺疾病数据挖掘中的应用
本研究探讨了基于两阶段频集思想的Apriori算法,并针对其性能瓶颈提出了改进方案。通过改进后的Apriori算法,对乳腺疾病数据进行了深入挖掘,以期获得更有价值的医学信息。
相关推荐
Apriori算法的改进及应用
Apriori算法的改进及应用####一、简介近年来,随着技术的发展,数据量的急剧增加促使了数据挖掘技术的发展,从海量数据中智能提取有价值信息以辅助决策。数据挖掘作为人工智能和数据库领域的研究热点,关联规则挖掘是其重要组成部分,而频繁项目集的发现则至关重要。 ####二、Apriori算法及其局限性Apriori算法是关联规则挖掘中的经典算法之一,其核心思想是利用频繁项集特性,通过多次数据库扫描确定频繁项集,进而生成关联规则。然而,Apriori算法存在扫描次数多和候选生成开销大的问题。 ####三、ZSApriori算法的优势为了解决Apriori算法的局限性,ZSApriori算法提出。相较于Apriori算法,ZSApriori算法只需一次数据库扫描即可计算支持度计数,显著提高了计算效率。此外,ZSApriori算法在生成候选项目集前进行预判断,有效减少了候选项目集数量,节省计算时间。 ####四、关联规则挖掘的应用##### 1.教育领域在高校教学质量评价中,关联规则挖掘可以分析教学评价数据,挖掘出教学效果与教师状态之间的关联规则,为教学部门提供决策支持信息,优化教学方式,提升教学质量。 ##### 2.就业市场关联规则挖掘可以帮助高校分析就业市场数据,揭示求职者特征与就业机会之间的关联规则,为学校提供招生策略参考,增强毕业生就业竞争力。
数据挖掘
0
2024-08-09
Apriori算法改进及应用
数据挖掘通过从海量数据中提取关联信息,揭示数据的潜在价值。Apriori算法是关联规则挖掘中常用的方法,本研究对其进行改进并实现,以提高关联规则挖掘的效率和准确性。
数据挖掘
4
2024-04-30
Apriori算法挖掘疾病症状关联规则
利用Apriori算法,我们可以从海量医疗数据中(例如包含1600万条记录的百万患者信息)提取疾病与症状之间的关联规则。Apriori算法通过分析频繁项集,识别出频繁共同出现的症状组合,进而揭示潜在的疾病模式。
算法与数据结构
3
2024-04-29
数据挖掘中的Apriori算法
数据挖掘领域中,Apriori算法是一种经典的关联分析方法,主要用于发现数据集中的频繁项集。该算法已在C++中得到实现和广泛应用。
数据挖掘
2
2024-07-15
数据挖掘中的Apriori算法
Apriori算法是数据挖掘中的基础之一,被认为是学习数据挖掘不可或缺的算法之一。它通过文档作为输入源,为数据挖掘提供了方便快捷的解决方案。
数据挖掘
2
2024-07-18
Apriori算法的数据挖掘应用
借助Apriori算法的关联性分析能力,探索数据内在的关联模式,为决策提供支持。
Access
3
2024-05-21
高校课程数据挖掘中Apriori算法的应用
高校课程数据挖掘中,Apriori算法被广泛应用于发现课程间的关联规则和模式,帮助学术界深入理解学生学习偏好和课程内容之间的关系。
数据挖掘
4
2024-07-15
Apriori算法改进研究
研究关联规则算法在数据挖掘中的地位 分析Apriori算法的核心原理 探讨Apriori算法在关联规则研究中的应用 提出Apriori算法的一种新改进方法
数据挖掘
4
2024-04-30
Apriori改进算法提升关联规则挖掘效率
优化候选集计算:减少候选集数量,加快匹配速度。 改进项集数据结构:优化数据存储方式,提升查询效率。 中间状态检查:及早终止无效候选集的搜索,节省计算资源。 事务压缩:减少数据库访问次数和频率,加速挖掘过程。
数据挖掘
3
2024-05-25