针对传统缺省规则知识挖掘算法的繁琐问题,提出了基于泛化分配表(GDT)和约简概念格(CL)的GDTCL缺省规则挖掘模型。该模型结合了GDTCL的优势:通过GDT提取条件属性的子集,解决了粗集理论计算的NP问题,并以扩展概念格的形式展示了GDT泛化层次下的蕴含关系,限定了规则的强度和支持度。最终通过约简概念格算法实现缺省规则的高效挖掘。实验表明,本模型能够从不完整矿山信息系统中提取无重复、易存储且匹配性高的缺省规则,适合在矿山领域知识发现中的应用。