[目的/意义] 加强网络舆情管理,对群体性突发事件进行有效预判是社会创新治理的重要任务。在大数据背景下,如何提高舆情特征数据挖掘效率和舆情趋势预测精度,探索舆情智能预警机制,是当前亟待解决的问题。 [方法/过程] 构建了大数据背景下的网络舆情采集和基本特征挖掘体系,探索舆情大数据分布式处理和文本计算边缘化,注重舆情敏感性特征挖掘,提高舆情特征查询效率。基于复杂网络对舆情团落进行分析,利用深度学习提高舆情智能计算能力,对网络舆情事件进行演化推理,提升网络舆情态势智能分析水平。[结果/结论] 将机器系统的舆情定量计算能力和舆情决策者的定性分析能力结合起来,建立人机协同的舆情智能预警机制,提高舆情预警的可视化,为突发事件提供预控方案。
【大数据背景下的网络舆情智能预警机制】 随着互联网的快速发展,网络舆情成为衡量社会情绪和公众态度的重要指标。在大数据时代,海量的网络信息为舆情分析提供了丰富的数据源,但同时也带来了挑战,如何高效地处理这些数据并准确预测舆情走向成为关键。文章提出了构建网络舆情采集和特征挖掘体系的方法。这一体系通过大数据技术提高舆情数据的采集效率,利用分布式处理技术处理大数据量,以适应快速变化的网络环境。同时,文本计算的边缘化处理使得在分布式系统中能更快地提取舆情敏感特征,从而提升查询速度。通过复杂网络理论对舆情团落进行分析,可以揭示舆情事件之间的关联性和演化规律。利用深度学习技术,能够进一步提升对舆情的智能计算能力,通过对网络舆情事件的演化推理,增强对舆情态势的智能分析水平,预测其可能的发展趋势。再者,建立人机协同的舆情智能预警机制是文章的核心成果。这一机制结合了机器的定量计算能力与人类决策者的定性分析,形成了一种互补模式。通过提高舆情预警的可视化程度,可以为预防和应对突发事件提供及时的预控方案,实现更有效的社会管理。论文强调了录用定稿网络首发的严谨性和正式性,确保了研究成果的创新性、科学性和先进性,并遵循了相关的学术规范和技术标准。通过在网络版期刊上发表,这些研究成果得以快速传播,为学术交流和社会实践提供了宝贵的参考。的研究对于理解大数据环境下网络舆情的动态演变、预警机制的构建以及社会创新治理具有重要意义。它不仅推动了舆情分析的技术进步,还为实际的舆情管理工作提供了理论指导和实用工具,对于提升社会公共事务的预见性和应对能力具有深远影响。