近年来,空气污染急剧增加,并且对所有生物造成的影响更糟。世界上大多数国家都在与日益增加的空气污染水平作斗争。因此,控制和预测空气质量指数(AQI)已成为必要。 在此研究项目中,我们将实施数据挖掘和机器学习模型来预测AQI并将AQI进行分类。对于AQI预测,我们实现了五个回归模型:主成分、偏最小二乘法、留一维CV的主成分、留一维CV的偏最小二乘,以及多个印度城市的多元回归AQI数据。根据AQI的值,AQI指数进一步分为6个不同的类别,即“好、满意、中、差、非常差和严重”。为了预测AQI等级,我们使用重复CV分类算法开发了三种分类模型,分别是多项式Logistic回归和K最近邻。数据集来自印度不同城市的空气质量数据集,通过留一法交叉验证的PLS模型进行训练。
AIR-QUALITY-PREDICTION 使用数据挖掘和机器学习预测AQI及分类
相关推荐
机器学习算法简介及分类
机器学习的发展中,有一条被称为“没有免费的午餐”定理。简单来说,它指出没有一种算法能够解决所有问题,尤其是在监督学习领域。
算法与数据结构
3
2024-07-17
数据挖掘:实用机器学习工具和技术
数据挖掘中常用的工具和技术
数据挖掘
3
2024-05-25
机器学习常用开源数据集及数据挖掘、机器学习、深度学习的区别
机器学习常用开源数据集
在进行机器学习项目时,使用真实数据至关重要。许多开源数据集涵盖了多个领域,为机器学习研究和应用提供了丰富的资源。
寻找开源数据集的途径:
数据仓库平台: 许多平台专门收集和整理开源数据集,例如 Google Dataset Search、Kaggle Datasets、UCI Machine Learning Repository 等。
相关领域网站: 许多研究机构或组织会发布自己领域内的开源数据集,例如医疗、金融、图像识别等。
数据挖掘、机器学习、深度学习的区别
数据挖掘 侧重于从数据中发现模式和规律,并利用算法模型进行分析。其核心目标是揭示数据变量之间的关系,并通过数据可视化等方式进行呈现。
机器学习 属于人工智能的一部分,通过训练数据和算法模型赋予机器学习能力。机器学习算法可以从数据中学习知识,并构建模型来进行预测或决策。
深度学习 是机器学习的一个子领域,其特点是使用多层神经网络进行学习。深度学习在图像识别、自然语言处理等领域取得了显著成果,但通常需要大量的训练数据和计算资源。
三者之间的关系: 数据挖掘为机器学习提供数据基础和分析目标,而机器学习为数据挖掘提供算法支持。深度学习作为机器学习的一部分,进一步扩展了机器学习的应用领域和能力。
数据挖掘
2
2024-07-01
机器学习与数据挖掘中的图像分类数据集
在机器学习和数据挖掘领域,图像分类是一项基础且关键的任务,涉及计算机视觉和模式识别。这个专为研究而设计的“猫狗分类数据集”包含猫和狗两类图像,用于训练模型并评估其性能。数据集已预先划分为训练集和测试集,便于开发者进行模型训练和泛化能力验证。数据预处理阶段包括图像缩放、归一化和增强等步骤,以提高模型训练效率。特征提取使用卷积神经网络(CNN)等方法,帮助模型从图像中提取有意义的特征。常用的模型包括SVM、随机森林以及经典的深度学习模型如AlexNet和ResNet,这些模型通过反向传播和梯度下降进行训练优化。模型评估通过准确率、精确率、召回率和F1分数等指标进行,以验证模型在测试集上的预测效果。
数据挖掘
2
2024-07-17
机器学习训练营:预测性表格数据挖掘与表格数据深度学习
GeekBang 机器学习训练营系列课程之一
课程目标: 聚焦重要机器学习知识,本课程是该系列第一部分,系列二为自然语言建模,系列三为计算视觉与强化学习,侧重自动驾驶。
课程安排与贡献者: 每周更新一次,三个系列预计一年完成。课程内容由微软亚洲研究院、DeepMind、Facebook AI Research、清华大学、北京大学、阿姆斯特丹大学的专家学者共同打造。
课程语言: 课程讲义将提供中英文版本,英文版即将推出。
课程大纲 (持续更新中)* 第一章: Python Colab 与 Jupyter Notebook* 深度学习工作环境搭建* Python 与 R 回顾* 异常处理与函数式编程技巧* Python 函数式编程:装饰器、数据类、文档字符串* 第二章:Python 代码加速
数据挖掘
3
2024-05-23
数据挖掘机器学习
使用 Spark、PySpark、Spark 管道、Jupyter Notebook 学习数据挖掘机器学习
数据挖掘
4
2024-05-15
数据挖掘(机器学习)课程报告及Weka源码及相关论文
是在蒋良孝老师指导下完成的课程报告。报告涵盖了四个改进思路:1. 通过查阅论文、自行思考和实验验证后完成;2. 源码位于Weka的src/main/java/weka/classifiers/wangliyu/ID3,包含报告前三个改进思路的代码,可供参考;3. 上传此文为有需要的同学提供一些指导。
数据挖掘
1
2024-07-20
利用数据挖掘技术实现分类预测模型
利用数据挖掘技术,我们可以建立分类预测模型,用于对未知数据进行分类测试。这些模型的应用不仅限于测试数据,还可以在实际情境中进行预测。
Hadoop
0
2024-08-29
分类预测工具-数据挖掘软件WEKA详解
在WEKA中,分类和回归任务都统一在“Classify”选项卡中进行。这两种任务都以目标属性(即类别属性或输出变量)为核心。我们通过训练数据集,利用实例的特征来预测目标属性。模型的建立依赖于训练集中已知的输入输出关系。成功建模后,我们可以用这个模型来预测新的未知实例。模型质量的评估标准主要是预测准确度。
数据挖掘
0
2024-10-11