信息熵是粒计算理论中用于度量不确定信息的重要工具之一。现有的异常数据挖掘算法多集中于处理确定性的异常数据。然而,关于使用信息熵来度量不确定性数据以实现异常数据挖掘的研究相对较少。基于此,在引入信息熵概念的基础上,定义了基于信息熵的异常度,用以衡量数据之间的异常程度,并提出了一种基于信息熵的异常数据挖掘算法。该算法能够高效地进行异常数据的挖掘。理论分析和实验结果均证明了该算法的有效性和可行性。
基于信息熵的异常数据挖掘算法解析
相关推荐
基于 ICA 的异常数据挖掘算法研究
提出了基于影响函数的异常数据检测方法,该方法通过投影分析来分离观测数据中的异常成分,有效消除脉冲噪声。实验结果验证了该方法在异常数据检测方面的可靠性和有效性。
数据挖掘
11
2024-05-28
SOIS中基于信息熵的属性约简
粗糙集理论用于SOIS中属性约简。通过信息论视角,引入信息熵和相对信息量。基于信息熵定义属性约简,并提出减价算法。示例说明方法有效性。
数据挖掘
15
2024-05-26
MATLAB信息熵计算
MATLAB提供高效便捷的函数,用于计算信息熵,量化数据的不确定性。
Matlab
22
2024-05-21
基于Spark的系统信息熵和条件熵计算
利用Spark计算CMIM、MRMR、MIFS等方法的开源库已经相当成熟。作者在仿照Spark MLlib库的特征选择功能基础上,扩展了支持系统信息熵和条件熵计算的方法。需要具体结果时,可直接调用ml.feature中相应的方法。
spark
11
2024-08-03
基于信息熵与TOPSIS的综合评价方法
方法概述
该方法融合信息熵和TOPSIS法进行综合评价。首先,利用信息熵计算指标权重,客观反映指标信息量;随后,应用TOPSIS法,基于指标权重计算综合得分,对评价对象进行排序。
步骤
数据标准化处理
计算信息熵
确定指标权重
计算各方案与理想解的距离
计算综合得分
排序
优势
客观性:权重由数据自身决定,避免主观因素影响
综合性:考虑指标信息量和方案与理想解的距离
可操作性:步骤清晰,易于实现
算法与数据结构
17
2024-04-30
Web日志异常数据挖掘算法与应用
Web 日志文件的异常检测一直是个挺头疼的活儿,尤其数据量大的时候,手动基本不现实。这篇文章用比较实用的方法搞定了这个事儿,用的是基于距离的离散统计法,还加了个综合统计法,搭配校园网的实际日志跑了一圈,结果还不错。
离散统计法的好处就是上手快,思路也简单——算距离,看谁“跳得”最远,谁就是异常。比如访问量、响应时间这些指标,拉一条中位线,谁偏得离谱谁就危险。用Python搞个小脚本跑一下,也就几分钟的事儿。
综合统计法就更进一步了,多个维度一起看,比如IP 分布、访问频率、页面路径,交叉着算。不仅能找出“跳得远的”,还能看出“跳得精的”。这种方法对防爬、防刷还蛮有用的,搭配下ELK那一套也挺顺
数据挖掘
0
2025-06-29
数据挖掘原理与实践第4章ID3算法与信息熵
基本概念的第四章 PPT 是你入门信息熵和ID3 算法的好材料。里面的概念讲得比较清楚,比如信息增益怎么计算、怎么选属性这些,算是比较实用的基础梳理。讲到 ID3 决策树的构建流程时,配图也挺直观的,刚接触的同学看起来压力不大。
信息熵的定义有点绕,但 PPT 里配了小例子,像“打球还是下雨”那种,用日常场景解释概率分布,有。你要是搞不清楚什么是“熵越小越纯”,这部分建议多看几遍,理解后你会发现挺有趣的。
如果你是想实际动手,可以顺着这几个资料看下去,像ID3 算法决策树程序实现和信息增益的 Java 实现,里面有完整代码,基本照着写一遍就能跑通。
还有个细节,PPT 里虽然没展开讲信息增益率
算法与数据结构
0
2025-06-23
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
17
2024-05-27
影像学检查信息熵质量评估
影像学检查质量的代码工具还挺实用的,适合你如果在搞神经影像、MRtrix3、MATLAB 这些方向。它的亮点是用了基于熵的方法来过滤断层扫描图像,比传统的 FA 和 FOD 方法多了点新意,也能补充一些信息。
工具里用的熵算法是由 Méghane DECROOCQ 开发的,结合了 MRtrix3 和 MATLAB 做了完整流程。输入数据也不麻烦,直接给了 8 个患者的数据,每个有 9 条神经的数据可以对比,比如像三叉神经、动眼神经这些。
想尝试这个工具,可以顺便看看跟它相关的一些资源,像信息熵的计算、图像、TOPSIS 综合评价这些也都比较对口。数据是现成的,格式清晰,变量名也比较好懂,用 R
统计分析
0
2025-06-22