本平台通过Spark on Yarn架构,建立了一个高效的淘宝数据挖掘平台。借助分布式计算和大规模数据处理能力,平台具备快速数据分析、精准推荐和实时用户画像生成等功能。平台的核心模块包括数据预处理、模型训练与优化、以及实时推送服务。
### 平台应用
1. 推荐系统:基于用户行为分析,智能推荐商品,提升用户黏性。
2. 用户画像:通过分析用户的购买记录、浏览历史等,生成详尽的用户画像,助力精准营销。
3. 实时数据监控:实时获取数据反馈,进行动态调整,以优化用户体验。
平台充分利用了Spark的内存计算特性和Yarn的资源管理优势,有效提升了数据处理效率。
基于Spark on Yarn的淘宝数据挖掘平台应用解析
相关推荐
基于Spark的大数据可视化挖掘平台
随着信息技术的飞速发展,大数据的应用已成为各行业的重要驱动力。特别是在千亿级别的大数据环境中,如何高效进行特征挖掘、实时处理、即席分析及离线计算等操作成为重要挑战。传统的关系型数据库或分布式平台难以满足这些高性能需求。介绍了一种基于内存迭代计算框架(如Apache Spark)的大数据可视化挖掘平台,显著提升了计算效率,灵活应对各种分布式计算和存储场景。
数据挖掘
0
2024-08-08
Spark on Yarn模式部署指南
Spark on Yarn模式部署是将Spark应用程序部署在Yarn集群上的常见方法,这样可以利用Yarn的资源管理和调度功能,从而提升应用程序的性能和可靠性。步骤一:修改主机名,添加主机名到IP地址映射首先,创建三台虚拟机并安装Ubuntu服务器操作系统。编辑/etc/hostname文件,修改虚拟机的主机名,并添加主机名到IP地址映射。完成后,重启虚拟机。步骤二:配置免密码登录配置master免密码登录master、slave1和slave2,以便在后续操作中免密码登录到这些主机。步骤三:安装并配置JDK8下载并安装JDK8,配置Java环境变量。将JDK8复制到/usr/目录并解压缩,编辑/etc/profile文件,添加Java环境变量信息,并执行命令使配置立即生效。步骤四:配置Hadoop下载Hadoop的binary版本,并上传到master主机。在新建的spark-on-yarn目录中,将Hadoop和Spark复制到该目录下,编辑profile文件,添加Hadoop home环境变量信息,并配置Hadoop的环境变量和配置文件。部署优点这种部署方式利用了Yarn的资源管理和调度功能,提高了应用程序的性能和可靠性,同时简化了应用程序的管理和维护工作。结论Spark on Yarn模式部署是一种高效且可靠的Spark应用程序部署方式。
spark
2
2024-07-13
Spark 2.2.0 与 YARN 集群的协作
针对 Spark on YARN 模式,spark-2.2.0-bin-hadoop2.6.tgz 能够提供必要的支持,实现 Spark 应用在 YARN 集群上的高效运行。
spark
5
2024-04-30
大数据分析平台Spark的应用
大数据分析平台Spark在“蘑菇云”行动中发挥了关键作用。
spark
3
2024-07-13
Hadoop YARN 架构解析
深入解析 Hadoop YARN 架构设计与实现原理。
Hadoop
4
2024-05-13
Java解析淘宝搜索数据
使用Java技术解析淘宝搜索页数据,生成XLS文件,便于后续追踪。
算法与数据结构
2
2024-04-30
深入解析YARN工作机制
YARN(Yet Another Resource Negotiator)是Hadoop 2.0中重要的资源管理系统,YARN的工作机制在于将资源管理与任务调度分离,使得Hadoop的计算框架能够支持不同的应用程序。YARN的架构主要由ResourceManager、NodeManager、ApplicationMaster和Container组成。
ResourceManager:负责整个集群的资源管理与分配,它接受应用程序提交的资源请求并进行资源的协调和分配。ResourceManager中有两个关键组件:- Scheduler:仅负责资源分配,而不负责监控应用程序的状态和进程。- ApplicationManager:负责应用程序的启动和生命周期管理。
NodeManager:NodeManager是每个节点上运行的代理程序,负责管理单个节点的资源,并监控每个Container的资源使用情况。它定期向ResourceManager发送心跳报告。
ApplicationMaster:每个应用程序会拥有一个ApplicationMaster,它负责管理该应用程序的生命周期,分配资源并与NodeManager协调任务的执行。
Container:Container是YARN中的最小资源分配单位,YARN的工作机制中,任务被打包成多个Container,由NodeManager分配至集群中的各节点并执行。
YARN的工作机制流程:1. 用户向ResourceManager提交应用。2. ResourceManager分配一个Container用于启动ApplicationMaster。3. ApplicationMaster向ResourceManager申请任务所需资源。4. ResourceManager将资源分配给ApplicationMaster。5. ApplicationMaster协调NodeManager在Container中执行任务。6. NodeManager监控Container的资源使用情况,保证任务顺利执行。
Hadoop
0
2024-10-28
深入解析Spark大数据应用案例
Spark作为大数据处理的重要框架,以其高效、易用和弹性扩展的特性广受欢迎。本资料详细介绍了Spark在Core、SQL和Streaming处理方面的实战案例,帮助读者深入理解Spark的各类应用场景和操作技巧。首先,Spark Core模块提供了分布式任务调度、内存管理和错误恢复等基础功能,案例展示了如何创建SparkContext,并展示了RDD的基本操作和容错机制。其次,Spark SQL允许用户通过SQL或DataFrame/Dataset API进行结构化数据查询和处理,案例展示了不同数据源的注册和SQL查询,以及DataFrame的常见操作和高级功能。最后,Spark Streaming组件实现了对实时数据流的低延迟处理,案例中演示了如何设置DStream并处理来自不同数据源的流数据,同时涵盖了状态操作和事件时间处理等关键技术。此外,还介绍了Spark与Hadoop的集成,展示了在Hadoop上部署和运行Spark作业的实际操作。
spark
0
2024-10-21
SPSS Clementine数据挖掘平台的革新与应用
Clementine是由ISL(Integral Solutions Limited)开发的数据挖掘工具平台。1999年,SPSS公司收购了ISL并重新整合开发了Clementine,使其成为其重要产品之一。Clementine结合商业技术,能够快速建立预测性模型,并将其应用于商业决策中,从而帮助优化决策过程。其强大的数据挖掘功能和显著的投资回报率使其在业界享有盛誉。与那些仅关注模型外在表现而忽视数据挖掘在整个业务流程中应用价值的工具相比,Clementine通过其先进的数据挖掘算法,将数据挖掘贯穿业务流程始终,大大提高了投资回报率,并缩短了投资回报周期。
数据挖掘
3
2024-07-18