针对当前物流行业中资源优化与组织调度存在的实际问题,本研究以现有资源分类体系为基础,结合实际数据,提出基于粗糙集理论的物流资源分类方法。首先通过粗糙集理论对资源属性进行约简,随后应用数据挖掘技术基于属性重要度进行资源分类,最终得出了有效的资源分类规则,为物流资源整合提供理论支持。通过实例验证,证明了该分类方法的实用性和有效性。
研究报告-基于粗糙集的物流资源分类方法探讨
相关推荐
基于粗糙集的条件信息熵权重方法
该方法利用粗糙集理论处理不确定信息,通过计算条件信息熵来量化属性重要性,进而确定权重。
算法与数据结构
2
2024-05-27
基于模糊粗糙集的企业财务报告舞弊检测研究(2011年)
企业财务报告舞弊检测方法的研究一直是财务管理领域的热点问题,目前的研究方法包括统计学、数据挖掘技术和模糊神经网络等。利用模糊粗糙集方法对财务指标进行约简并赋予权重,建立综合评价体系,进而构建企业财务报告舞弊检测模型,为解决财务报告舞弊问题提供新的思路。
数据挖掘
1
2024-07-20
粗糙集理论的学术探索与研究
粗糙集理论是处理不确定、不完整、不一致知识的数学工具,由Z. Pawlak于1982年提出,解决现实世界中的不确定性问题。该理论在数据挖掘、机器学习等领域广泛应用。不可区分关系是其核心概念之一,用于描述对象间的相似性。信息系统(I = (U, A, V, F))定义了论域、属性集合和属性值域之间的关系。上下近似集则描述了集合的不确定边界。
数据挖掘
0
2024-08-29
基于粗糙集的供应链绩效改进决策研究
利用粗糙集理论构建供应链绩效改进决策模型,包括指标约简方法和指标权重计算模型。结合制造业案例,通过平衡记分卡指标体系约简,建立决策模型,确定客观权重,分析结果并提出绩效改进建议。
数据挖掘
4
2024-05-20
基于粗糙集的数据挖掘技术探索
基于粗糙集理论的数据挖掘方法正在被广泛研究和应用。这一方法不仅能够处理数据中的不确定性和不完整性,还能发现隐藏在数据背后的有价值信息。研究者们通过改进算法和优化模型,不断提升其在各个领域的应用效果和准确度。未来,随着技术的进步和理论的深入,基于粗糙集的数据挖掘技术有望在更广泛的领域展现其潜力。
数据挖掘
1
2024-08-03
基于迭代局部搜索和粗糙集的新属性约简算法探讨
介绍了两种基于迭代局部搜索和粗糙集理论的新型属性约简算法。这两种算法均以相对约简的贪婪策略作为起点,并采用不同的属性选择方式。第一种算法采用随机选择策略,而第二种算法则通过复杂的选择程序进行优化。另外,第一种算法设定了固定的迭代次数,而第二种算法则在达到局部最优解时停止迭代。通过对来自UCI的八个著名数据集进行的实验验证,展示了这些算法在属性约简中的显著优势。
Matlab
2
2024-07-21
粗糙集属性约简调研
本调研分析了粗糙集理论中属性约简的方法,为大学生理解这一概念提供了指南。
数据挖掘
2
2024-04-30
基于对偶宇宙的粗糙集模型的动态增量学习方法
对偶宇宙的粗糙集模型(RSMDU)是广义的粗糙集理论(RST)模型,适用于两个宇宙上的数据挖掘任务。介绍了一种动态增量学习方法,用于在对象随时间变化的情况下更新RSMDU的近似值。图示了该方法在处理动态环境中的有效性。
数据挖掘
1
2024-07-13
基于扩展粗糙集的近似概念格规则挖掘
粗糙集与概念格作为知识发现和数据挖掘的有效工具,已在诸多领域展现出应用价值。本研究在对二者理论基础进行深入研究的基础上,提出了一种利用扩展粗糙集模型改进概念格近似性的方法。
该方法通过引入 β-多数蕴涵关系,实现了概念格外延的近似合并,并构建了近似概念格 (ACL)。在此基础上,进一步提出了概念格粗糙近似和规则挖掘算法 (LCRA)。UCI 机器学习数据库测试结果验证了该算法的可行性和有效性。
数据挖掘
4
2024-05-23