在多个研究团队试图以非分布式方式建立数据仓库中的详细级别时,可能会遇到特殊情况。图6-32展示了这种现象,不同的团队共同创建数据仓库中的详细级别,只要他们的数据集是互斥的,就不会出现太多问题。然而,更常见的情况是,不同团队设计和装载的数据可能有重叠。图6-33显示了多个团队的数据重叠情况。
多个研究团队利用深度学习从MRI数据自动识别阿尔茨海默氏病的详细研究
相关推荐
基于深度学习的MRI数据阿尔茨海默病自动识别方法
海量数据管理策略:以简要记录为例
管理数据仓库中的海量数据是构建高效数据分析系统的关键挑战。简要记录作为一种有效的数据管理技术,能够显著降低数据规模,通常可减少2-3个数量级。
简要记录的构建为数据仓库架构师提供了强大的数据管理能力。 与其他设计或数据管理技术相比,创建简要记录在有效管理数据仓库中的海量数据方面, often emerges as the preferred and most potent technique. 然而,这种方法并非完美无缺。
采用简要记录方式,必然会导致信息粒度的损失。因此,设计者必须确保这种损失对于数据分析人员决策支持的影响可忽略不计。
为了减轻信息损失的潜在风险,设计者可以采取两种主要策略:
迭代式简要记录构建: 通过多次迭代创建简要记录,设计人员可以灵活地控制信息的精简程度,确保每一轮迭代都不会遗漏关键信息。
历史细节备份: 在构建简要记录的同时,保留详细的历史数据,以便在需要时进行更深入的分析。
总而言之,简要记录是一种有效的管理海量数据方法,但需要仔细评估信息粒度损失的潜在影响。 通过采用迭代式构建和历史数据备份等策略,可以最大限度地发挥简要记录的优势,同时降低信息损失的风险。
DB2
2
2024-06-26
数据仓库中的快照-论文研究-使用深度学习方法从mri数据自动识别阿尔茨海默氏病
3.6 数据仓库中的快照数据仓库服务于各种应用和用户,如顾客系统、市场系统、销售系统和质量控制系统。尽管数据仓库的应用和类型各异,但每个数据仓库内部都有一种称为“快照”的数据结构。图3-34展示了数据仓库快照的基本组成形式。快照源于特定事件的发生。触发快照的事件多种多样,包括记录离散活动的信息,如填写支票、打电话、收到货物、完成订单、购买保险单等。这些离散活动是随机发生的,需要记录下来。另一类触发快照的事件是规定的时间点,如日末、周末、月末等,这些时间点是可预测的。快照由四个基本部分组成:键码(KEY)、时间单元、与键码相关的初始数据和作为快照过程一部分捕获的二次数据。键码用来识别记录和初始数据,时间单元根据时间元素生成,通常指快照描述事件发生的时刻,初始数据是与键码直接相关的非键码数据,如产品销售、价格、条件、地点和代理。二次数据表示快照生成时捕获的外来信息,如成交时的股市价格或优惠利率。数据仓库中的数据记录是一种时刻的快照,包含不同类型的数据。
DB2
2
2024-07-12
使用深度学习技术识别MRI数据中的阿尔茨海默氏病
许多企业在采用数据仓库技术时,首先为财务或市场管理部门建立数据仓库。成功后,其他部门也希望在此基础上建立相应的数据仓库。数据仓库的设计者需要有效管理和协调多个项目,特别是管理多个数据仓库开发项目时,首要问题是了解这些项目的性质及其与整体体系结构的关系。不同类型的数据仓库项目需要采用不同的管理方案。这些项目可以分为多种典型情况,如图6-18所示。其中一种较少见的情况是公司内部业务范围完全分离,不同的业务范围独立运作且没有业务集成和数据共享。在这种情况下,各数据仓库开发项目间几乎不会发生冲突,因此管理和协调需求较低。
DB2
4
2024-07-13
数据仓库与数据模型深度学习在MRI数据中的阿尔茨海默氏病自动识别研究
3.3 数据仓库与数据模型
数据仓库和数据模型既适用于现有系统环境,也适用于数据仓库中的环境。图3-8进一步展示了不同层次模型之间的关系。
图3-8:不同层次模型的关系
数据仓库 -> 下载操作型数据
操作型数据仓库 -> 部门/个人数据类型
企业模型、操作型模型和数据仓库模型之间存在直接和间接应用的关系。
关键点:
操作型数据模型等价于企业数据模型。
在数据库设计前需加入性能因素,并去除纯操作型数据。
为键码增加时间元素,必要时增加导出数据,并创建人工关系。
DB2
0
2024-10-25
从 MRI 数据中使用深度学习方法自动识别阿尔茨海默症
通过存储尽可能多的细节数据,可以在分析工作中得到保障。但是,存储和处理的开销可能很大,并且会阻碍使用分析技术。
构建 DSS/EIS 环境时,保存所有细节数据是不合适的。
DB2
5
2024-04-30
马里奥Matlab代码-Alzheimer数学模型存储库淀粉样蛋白级联假设与阿尔茨海默氏病
马里奥Matlab代码Alzheimer数学模型存储库包含用于模拟Michiel Bertsch,Bruno Franchi,Luca Meacci,Mario Primicerio和Maria Carla Tesi提出的数学模型的代码。这些模型探讨了淀粉样蛋白级联假设与阿尔茨海默氏病之间的关系。你可以在Matlab中使用这些代码,或者在Octave中稍作修改。每个文件的标题指示了可以生成的相关图形。
Matlab
0
2024-08-28
基于MATLAB的车牌自动识别研究
这篇论文详细介绍了基于MATLAB的车牌自动识别技术,提供了详尽的源代码和参考文献。研究表明,该技术在实际应用中表现出色。
Matlab
2
2024-07-15
利用机器学习技术预测糖尿病的研究分析
医疗保健行业包含大量敏感数据,需要小心地进行处理。糖尿病作为一种全球范围内严重的致命疾病,急需一种可靠的预测系统来帮助医疗专业人员做出诊断。不同的机器学习技术可用于从不同角度检查数据,并提炼出有价值的信息。通过应用某些数据挖掘技术,大数据的可访问性和可用性将带来更有用的知识。研究的主要目标是识别新模式,解释这些模式,为用户提供重要且有用的信息。糖尿病会导致心脏病、肾病、神经损伤和失明。因此,高效挖掘糖尿病数据是一个至关重要的问题。本研究使用数据挖掘技术和方法,寻找合适的技术来对糖尿病数据集进行分类并提取模式。在本研究中,应用了医学生物信息学分析来预测糖尿病。我们使用WEKA软件作为挖掘工具,对Pima Indian糖尿病数据库(来自UCI存储库)进行分析,目的是建立有效的预测和诊断模型。在本研究中,采用自举重采样技术提高准确性,并将朴素贝叶斯、决策树和KNN进行对比,以比较其性能。
数据挖掘
0
2024-10-29
基于深度学习的手写数字识别研究
利用深度学习技术进行手写数字识别的研究,采用MATLAB实现并详细描述了相关代码。
Matlab
0
2024-09-30