数据挖掘作为信息技术领域重要分支,致力于从海量数据中提取有用信息,支持决策。其中,关联规则挖掘是常见方法,发现数据集中项集之间的有趣关系。APRIORI算法由Agrawal和Srikant于1994年提出,主要用于发现频繁项集和强关联规则。该算法通过设定最小支持度阈值来识别频繁项集,然后生成关联规则。其核心思想是基于频繁项集的先验性质,减少搜索空间提高效率。算法分为项集生成和剪枝验证两步,逐步生成并验证频繁项集。在实际应用中,针对大数据集,可采用优化策略如数据库索引、并行化处理等提升效率。