数据仓库与知识发现在信息技术领域具有重要地位,尤其在大数据分析和商业智能中。南京大学的课程深入探讨了数据仓库的集中式存储系统,用于整合来自多源数据以支持企业决策。课程涵盖了数据仓库设计原则如星型、雪花型和星座模型,以及维度和事实表构建方法。此外,课程还介绍了数据挖掘的核心目标——从大数据中提取有用信息和知识,包括预处理、模式发现(分类、聚类、关联规则)、模式评估等阶段。学生通过使用工具如R语言、Python库(Pandas、NumPy、Scikit-learn)和SPSS Modeler等,学习如何应用数据挖掘技术解决实际问题。
南京大学数据仓库与知识发现(数据挖掘)课程简介
相关推荐
NJU南京大学算法设计与分析期末复习指南
南京大学的《算法设计与分析》课程是一门核心计算机科学课程,帮助学生掌握各种经典算法的设计思想和分析技巧。期末复习是对整个学期所学知识的巩固和提升。以下是复习所需的资源描述及建议: 1. 课程教材和讲义:推荐使用《算法导论》(Introduction to Algorithms)等教材,涵盖排序、数据结构、图算法、动态规划、贪心算法等内容。 2. 课件和视频:复习课件和录播视频,理解算法设计和实现方法。 3. 习题集和答案:解析课后习题和历年期末试卷,熟悉考试题型和解题思路。 4. 在线资源:补充在线资源,提升复习效果。
算法与数据结构
8
2024-07-13
数据仓库与数据挖掘课程实验知识详解
数据仓库与数据挖掘课程实验知识点解析
一、数据仓库基础知识
1.1 数据仓库的概念
数据仓库是一种用于存储和管理大量历史数据的系统,主要用于支持业务决策过程。它通过收集、整理和组织来自不同源系统(如事务处理系统)的数据,为用户提供一致的、集成的数据视图。
1.2 数据仓库的特点- 面向主题:数据仓库围绕特定业务主题组织数据,而不是像传统数据库那样按照应用程序需求组织。- 集成性:数据仓库中的数据来源于多个异构数据源,需要进行清洗和转换,以确保数据的一致性和完整性。- 非易失性:一旦数据进入数据仓库,一般不再修改或删除,仅进行定期更新。- 随时间变化:数据仓库记录历史数据的变化,支持趋势分析。
数据挖掘
7
2024-10-25
数据挖掘与知识发现综述
本书详尽探讨了数据挖掘与知识发现领域的基础理论及研究方法。阐述了KDD和数据挖掘的概念,分析了数据挖掘的目标和知识发现的过程,深入探讨了相关领域和实际应用。
数据挖掘
6
2024-09-25
数据仓库简介
数据仓库是主题导向、整合、相对稳定、反映历史变化的数据集合。它是一种“数据存储”体系结构,支持结构化、启发式、标准化查询、分析报告和决策支持。
算法与数据结构
13
2024-05-16
数据仓库与数据挖掘
数据仓库将数据转化为可供分析的信息,而数据挖掘从这些数据中提取模式和趋势,两者结合可为决策提供支持。
数据挖掘
11
2024-05-13
BI基础知识数据仓库与数据挖掘概述
【BI基础知识】
BI,即Business Intelligence,是一种技术驱动的商业智能,其核心目标是帮助企业决策者通过数据洞察做出更明智的业务决策。BI涵盖了数据仓库、在线分析处理(OLAP)和数据挖掘等多个领域。
数据仓库是BI运行的基础,是一个专门设计用于决策支持的数据集合,具有以下特性:
面向主题:围绕特定业务主题进行组织。
集成:整合来自不同来源的异构数据。
相对稳定:主要用于查询,更新较少,关注历史变化。
反映历史变化:支持趋势分析和预测。
数据仓库的组成部分包括数据抽取工具、数据仓库数据库、元数据、数据集市、数据仓库管理、信息发布系统和访问工具。元数
数据挖掘
7
2024-11-01
数据挖掘算法和知识发现
掌握数据挖掘的基础概念、常用算法以及知识发现的方法和案例。
数据挖掘
8
2024-05-26
数据仓库与数据挖掘技术
这是一份关于数据仓库和数据挖掘技术的文档,希望对您有所帮助。
数据挖掘
11
2024-05-15
数据仓库与数据挖掘概览
信息技术普及后,企业运用管理信息系统处理事务与业务,积累了大量信息。为辅助管理决策,企业需要特殊工具从数据中提取知识,促进了数据环境需求和数据挖掘工具的发展。
数据挖掘
10
2024-05-23