2、构建正态云模型t定义模糊集: t根据实际问题的需求,利用前述特征因子定义归属类型模糊集,并建立相应的隶属云模型。对企业而言,可定义以下五个模糊集:1) A1:企业市场占有率相对较高;2) A2:企业价格波动较大;3) A3:企业具备强大的新产品开发能力;4) A4:企业具备强大的分销渠道与实体分配能力;5) A5:企业整体促销能力突出。 t确定了上述五个模糊集的隶属云,即确定了这些模糊集的三个数字特征值(Ex, En, He)。根据统计分析和计算结果,可以确认这些模糊集的隶属云的具体数字特征为:A1(5, 2/3, 1/2)、A2(9, 1, 1/2)、A3(9, 1, 1/2)、A4(9, 1, 1/2)、A5(9, 1, 1/2)。
构建正态云模型-《云模型》课件95页
相关推荐
正向云模型和逆向云模型的应用及原理分析
正向云模型和逆向云模型是云理论中的重要概念,它们通过模拟自然界的云朵形态来抽象不确定信息。正向云模型将确定性信息转化为概率分布,反映数据的不确定性;逆向云模型则从不确定性信息推断出可能的确定性值或概率分布。这些模型结合了模糊集与随机集,为量化不确定性提供新的框架。每个云模型由典型值、熵和分布宽度三个参数定义,共同描述概念的模糊边界和概率分布。云变换包括正向和逆向两种关键操作,使得云模型能够有效处理确定到不确定再到确定的信息转换。
统计分析
2
2024-07-30
Matlab中的云模型程序
这是一个基于Matlab编写的简单云模型程序,涵盖了上升云和下降云的模拟。
Matlab
1
2024-08-02
残差正态概率图与模型拟合优度
在响应面分析中,残差的正态概率分布图越接近直线,表明模型拟合效果越好。残差值均匀分布在直线两侧,意味着模型能准确预测响应值,偏差符合正态分布规律。反之,如果残差分布偏离直线,则可能存在模型失拟、异常值等问题,需要进一步分析和调整模型。
算法与数据结构
5
2024-05-12
生成Log正态阴影模型在Matlab中的开发
讨论了如何在Matlab中开发生成日志正态阴影模型的方法。
Matlab
2
2024-07-24
海量数据存储:云计算模型解析
云计算的出现为海量数据的存储提供了新的解决方案。其弹性可扩展、按需付费等特点,有效解决了传统存储方式成本高、扩展性差等问题。
云存储架构
云存储通常采用分布式架构,将数据分散存储在多个服务器节点上,并通过虚拟化技术提供统一的存储资源池。
关键技术
数据分片与复制: 将数据分割成多个部分存储在不同节点,并进行副本备份,保证数据可靠性。
一致性维护: 确保数据在多个副本之间保持一致性,采用多种策略,如 Paxos、Raft 等。
元数据管理: 维护数据的索引和位置信息,实现高效的数据定位和访问。
优势
高可扩展性: 可根据需求动态调整存储容量,满足海量数据增长需求。
高可用性: 数据多副本存储和故障自动转移机制,保障数据持续访问。
低成本: 按需付费模式,避免一次性投入大量资金购置硬件设备。
应用场景
大数据分析: 存储海量数据,为数据挖掘和分析提供基础。
企业级存储: 满足企业数据存储、备份和灾难恢复需求。
内容分发: 存储图片、视频等多媒体文件,提供快速的内容访问服务。
MySQL
5
2024-05-23
Panasonic 0.1m 室内点云模型
室内点云模型:降采样后包含 14,539 个点
噪音:存在少量室外噪音点
算法与数据结构
4
2024-05-25
基于Matlab的云发生器模型实现
云模型是基于模糊集合理论和概率理论交叉渗透的特定算法,即云发生器,用于定性概念和定量表示之间的不确定转换。它揭示了随机性和模糊性的内在关联性。通过实例解释了云模型在实际应用中的意义和作用。
Matlab
2
2024-07-24
MATLAB计算蒸气云爆炸半径的模型VEC
MATLAB提供了用于计算蒸气云爆炸半径的VEC模型。
Matlab
0
2024-09-26
Lilliefors正态性检验
使用Lilliefors正态性检验评估数据分布是否符合正态分布。
统计分析
4
2024-05-13